scholarly journals A relativistic basis of the quantum theory—III

Although there are some changes in method and in some places in the notation in this paper, which make it differ somewhat from the two papers I and II recently published in these ‘Proceedings,’ the same principle and object underlie it, and we may regard it as paper III of the series. It is believed that the alterations made and the manner of introducing the quantum equations make the presentation in the present form more elegant and that the theory is more satisfactory as a unitary theory. The quantum equations are made to emerge from a rather simple conception of a matrix length, of which the square may be identified as the square of the length of the theory of relativity. We begin with a discussion of the geodesics in a five-dimensional continuum and make certain changes both in the constants and in the point of view regarding the nature of the path of the electron in this space. The effect is to remove a difficulty with regard to the Kaluza-Klein cylindrical type of space.

The attempt to unite the first order equations of the quantum theory with the theory of relativity has led to a number of suggestions by various writers, most of whom consider operations in a continuum with four co-ordinates ( x, y, z, t ). Some add a fifth co-ordinate in order to complete the description of a point. For example, Fock and Iwanenko add ζ, a quantity capable of possessing the integral values (1, 2, 3, 4). Einstein in his latest attempt at a unitary theory retains the four dimensional continuum as the fundamental background, but introduces vectors with five components which are related to four dimensional vectors by means of a set of quantities γ, with appropriate affixes. This is a position half way between the four and five dimensional continuum and, in making use of this system, Solomon has found it necessary to introduce a fifth co-ordinate in order to include quantum phenomena into the scheme.


Nature ◽  
1931 ◽  
Vol 127 (3210) ◽  
pp. 706-706 ◽  
Author(s):  
G. LEMAÎTRE

Author(s):  
Moataz H. Emam

This book is an introduction to the modern methods of the general theory of relativity, tensor calculus, space time geometry, the classical theory of fields, and a variety of theoretical physics oriented topics rarely discussed at the level of the intended reader (mid-college physics major). It does so from the point of view of the so-called principle of covariance; a symmetry that underlies most of physics, including such familiar branches as Newtonian mechanics and electricity and magnetism. The book is written from a minimalist perspective, providing the reader with only the most basic of notions; just enough to be able to read, and hopefully comprehend, modern research papers on these subjects. In addition, it provides a (hopefully short) preparation for the student to be able to conduct research in a variety of topics in theoretical physics; with particular emphasis on physics in curved spacetime backgrounds. The hope is that students with a minimal mathematical background in calculus and only some introductory courses in physics may be able to study this book and benefit from it.


Author(s):  
Jean Vignon Hounguevou ◽  
Daniel Sabi Takou ◽  
Gabriel Y. H. Avossevou

In this paper, we study coherent states for a quantum Pauli model through supersymmetric quantum mechanics (SUSYQM) method. From the point of view of canonical quantization, the construction of these coherent states is based on the very important differential operators in SUSYQM call factorization operators. The connection between classical and quantum theory is given by using the geometric properties of these states.


1989 ◽  
Vol 04 (19) ◽  
pp. 5119-5131 ◽  
Author(s):  
E. I. GUENDELMAN

Gravitational Bags are spherically symmetric solutions of higher-dimensional Kaluza Klein (K – K) theories, where the compact dimensions become very large near the center of the geometry, although they are small elsewhere. The K – K excitations therefore become very light when located near the center of this geometry and this appears to affect drastically the naive tower of the masses spectrum of K – K theories. In the context of string theories, string excitations can be enclosed by Gravitational Bags, making them not only lighter, but also localized, as observed by somebody, that does not probe the central regions. Strings, however, can still have divergent sizes, as quantum mechanics seems to demand, since the extra dimensions blow up at the center of the geometry. From a projected 4-D point of view, very massive string bits may lie inside their Schwarzschild radii, as pointed out by Casher, Gravitational Bags however are horizon free objects, so no conflict with macroscopic causality arises if the string excitations are enclosed by Gravitational Bags.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 163
Author(s):  
Karl Hess

This review is related to the Einstein-Bohr debate and to Einstein–Podolsky–Rosen’s (EPR) and Bohm’s (EPRB) Gedanken-experiments as well as their realization in actual experiments. I examine a significant number of papers, from my minority point of view and conclude that the well-known theorems of Bell and Clauser, Horne, Shimony and Holt (CHSH) deal with mathematical abstractions that have only a tenuous relation to quantum theory and the actual EPRB experiments. It is also shown that, therefore, Bell-CHSH cannot be used to assess the nature of quantum entanglement, nor can physical features of entanglement be used to prove Bell-CHSH. Their proofs are, among other factors, based on a statistical sampling argument that is invalid for general physical entities and processes and only applicable for finite “populations”; not for elements of physical reality that are linked, for example, to a time-like continuum. Bell-CHSH have, furthermore, neglected the subtleties of the theorem of Vorob’ev that includes their theorems as special cases. Vorob’ev found that certain combinatorial-topological cyclicities of classical random variables form a necessary and sufficient condition for the constraints that are now known as Bell-CHSH inequalities. These constraints, however, must not be linked to the observables of quantum theory nor to the actual EPRB experiments for a variety of reasons, including the existence of continuum-related variables and appropriate considerations of symmetry.


The interaction representation has recently been introduced into the quantum theory of fields by Tomonaga and Schwinger. Applications of the theory to interacting meson-photon fields have led to apparent difficulties in determining invariant interaction Hamiltonians. Another troublesome feature is the necessity of verifying the integrability conditions of the so-called generalized Schrödinger equation. In the present paper the theory of the interaction representation is presented from a different point of view. It is shown that if two field operators with the same transformation character satisfy two different field equations, there is a unique unitary transformation connecting the field variables on any space-like surface given such a correspondence on one given space-like surface. A differential equation for determining this unique unitary transformation is found which is the analogue of Tomonaga’s generalized Schrödinger equation. This gives directly and simply an invariant interaction Hamiltonian and renders unnecessary the explicit verification of the integrability of the Schrödinger equation, since this is known to have a unique solution. To illustrate the simplification introduced by the present theory, the interaction Hamiltonian for the interacting scalar meson-photon fields is calculated. The result is the same as that obtained by Kanesawa & Tomonaga, but it is obtained by a straightforward calculation without the need to add terms to make the Hamiltonian an invariant.


1980 ◽  
Vol 56 ◽  
pp. 43-58 ◽  
Author(s):  
H. Moritz

AbstractThe impact of relativistic theories of space, time and gravitation on the problem of reference systems is reviewed.First, the concept of inertial systems is discussed from the point of view of the special and the general theory of relativity. Then, relativistic corrections of Doppler, laser and VLBI, and similar effects are reviewed; they are usually on the order of 10-8. Finally, the problem of a possible variation of the gravitational constant G (on the order of 10-11/year) is outlined; such a variation does not occur in special and general relativity, but is implied by certain generalized field theories which are less commonly accepted.


Sign in / Sign up

Export Citation Format

Share Document