The nature of universal primary interactions of particles

A theory of primary interactions between elementary particles is proposed. It is based on the hypothesis that there are three primary interactions: weak, electromagnetic, and strong; and each of them is characterized by a single coupling constant. The primary weak interactions couple the leptons to themselves and to vector and axial vector fields, but not to nucleons. The primary electromagnetic interactions couple the electromagnetic field to the charged leptons or to the neutral vector meson fields, but not to nucleons. The primary strong interactions couple the vector and axial vector fields to the nucleons. All the couplings are universal. On the basis of this theory it is possible to account quantitatively for the anomalous magnetic moments of the nucleons, the ratio of the Gamow –Teller and the Fermi β decay coupling constants, weak magnetism, absence of neutral lepton currents, pion-decay, pion-nucleon scattering lengths, and the principal features of the nuclear force. The theory when extended to strange particles, leads automatically to the suppression of weak decays of strange particles. Our older chirality invariant V – A four-fermion interaction is recovered as the effective interaction for small momentum transfers. No intermediate bosons in the conventional sense are required or expected. The application to the absolute calculation of electromagnetic mass shifts and non-leptonic decay rates yields finite answers which will be discussed in another paper.

2020 ◽  
Vol 8 (5) ◽  
Author(s):  
Yi-Fang Chang

First, various known unified theories of interactions in particle physics are reviewed. Next, strong and weak interactions are all short-range, which should more be unified. Except different action ranges their main character is: strong interactions are attraction each other, and weak interactions are mutual repulsion and derive decay. We propose a possible method on their unification, whose coupling constants are negative and positive, respectively. Further, we propose a figure on the unification of the four basic interactions in three-dimensional space, and search some possible tests and predictions, for example, strong-weak interactions transform each other, some waves may be produced. Finally, based on the simplest unified gauge group GL(6,C) of four-interactions, a possible form of Lagrangian is researched. Some relations and equations of different interactions are discussed.


1993 ◽  
Vol 08 (07) ◽  
pp. 1313-1344 ◽  
Author(s):  
D. EBERT ◽  
A.A. BEL’KOV ◽  
A.V. LANYOV ◽  
A. SCHAALE

Effective chiral Lagrangians for strong, weak and electromagnetic-weak interactions of composite pseudoscalar, vector and axial-vector mesons are derived up to the fourth order in the chiral expansion from quark flavor dynamics based on the Nambu-Jona-Lasinio model. This approach completes earlier work on strong interactions and applies the path-integral bosonization method to the nonleptonic weak quark Lagrangian including the emission of structural photons. As illustrations, the bosonized weak and electromagnetic-weak Lagrangians are applied to the description of K→π(η) and K→π(η)γ* transitions.


On the foundation of an antecedent non-linear meson field theory it is suggested that the π -meson fields may be described in terms of collective motions of the K -meson fields. A particular model of the K -nucleon interaction is considered whose collective π -modes have symmetrical PV coupling with the nucleon system; parity is conserved to a great extent for the π -nucleon system in the absence of strange particles. The direct K -nucleon interactions do not conserve parity; their sign and symmetry are qualitatively acceptable. The masses and coupling constants of the meson fields are determinate in terms of one universal coupling constant and a cut-off. The structure of this model suggests a natural way for the introduction of the ‘spurion’, describing weak interactions that violate strangeness.


1997 ◽  
Vol 50 (1) ◽  
pp. 123
Author(s):  
N. Ishii ◽  
H. Asami ◽  
W. Bentz ◽  
K. Yazaki

The nucleon and the delta are described as solutions of the relativistic Faddeev equation in the NJL model. We discuss the dependence of the baryon masses on the particular form of the four-Fermi interaction Lagrangians. Using the quark–diquark wave function, we calculate some bound state matrix elements such as the axial coupling constants, magnetic moments of the nucleon, the pion-nucleon sigma term and the proton-neutron mass difference. We also try to compare two pictures of describing the baryons in the NJL model, i.e. the mean-field approximation and the relativistic Faddeev approach. As a first step, we discuss how to improve the mean-field approximation by introducing an effective interaction. We also discuss the perturbative estimate of the deformation of the `vacuum" in the Faddeev approach.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2703 ◽  
Author(s):  
Sławomir J. Grabowski

The second-order Møller–Plesset perturbation theory calculations with the aug-cc-pVTZ basis set were performed on complexes of triel species: BCl3, BH3, AlCl3, and AlH3 acting as Lewis acids through the B or Al centre with Lewis base units: NCH, N2, NH3, and Cl− anion. These complexes are linked by triel bonds: B/Al⋅⋅⋅N or B/Al⋅⋅⋅Cl. The Quantum Theory of ´Atoms in Molecules´ approach, Natural Bond Orbital method, and the decomposition of energy of interaction were applied to characterise the latter links. The majority of complexes are connected through strong interactions possessing features of covalent bonds and characterised by short intermolecular distances, often below 2 Å. The BCl3⋅⋅⋅N2 complex is linked by a weak interaction corresponding to the B⋅⋅⋅N distance of ~3 Å. For the BCl3⋅⋅⋅NCH complex, two configurations corresponding to local energetic minima are observed, one characterised by a short B⋅⋅⋅N distance and a strong interaction and another one characterised by a longer B⋅⋅⋅N distance and a weak triel bond. The tetrahedral triel structure is observed for complexes linked by strong triel bonds, while, for complexes connected by weak interactions, the structure is close to the trigonal pyramid, particularly observed for the BCl3⋅⋅⋅N2 complex.


1996 ◽  
Vol 11 (14) ◽  
pp. 2419-2544 ◽  
Author(s):  
HERBERT WEIGEL

The description of baryons as soliton solutions of effective meson theories for three-flavor (up, down and strange) degrees of freedom is reviewed and the phenomenological implications are illuminated. In the collective approach the soliton configuration is equipped with baryon quantum numbers by canonical quantization of the coordinates describing the flavor orientation. The baryon spectrum resulting from exact diagonalization of the collective Hamiltonian is discussed. The prediction of static properties, such as the baryon magnetic moments and the Cabibbo matrix elements for semileptonic hyperon decays, are explored with regard to the influence of flavor symmetry breaking. In particular, the role of strange degrees of freedom in the nucleon is investigated for both the vector and axial vector current matrix elements. The latter are discussed extensively within the context of the proton spin puzzle. The influence of flavor symmetry breaking on the shape of the soliton is examined, and observed to cause significant deviations from flavor-covariant predictions on the baryon magnetic moments. Short range effects are incorporated by a chirally invariant inclusion of vector meson fields. These extensions are necessary for properly describing the singlet axial vector current and the neutron–proton mass difference. The effects of the vector meson excitations on baryon properties are also considered. The bound state description of hyperons and its generalization to baryons containing a heavy quark are illustrated. In the case of the Skyrme model a comparison is made between the collective quantization scheme and the bound state approach. Finally, the Nambu–Jona-Lasinio model is employed to demonstrate that hyperons can be described as solitons in a microscopic theory of the quark flavor dynamics. This is explained for both the collective and the bound state approaches to strangeness.


2013 ◽  
Vol 22 (12) ◽  
pp. 1350091 ◽  
Author(s):  
VIKAS KUMAR ◽  
P. C. SRIVASTAVA

The recently measured experimental data of 79,81,83 Se isotopes have been interpreted in terms of shell model (SM) calculations. The calculations have been performed in f5/2pg9/2 space with the recently derived interactions, namely JUN45 and jj44b. To study the importance of the proton excitations across the Z = 28 shell in this region, we have also performed calculation in fpg9/2 valence space using an fpg effective interaction with 48 Ca core and imposing a truncation. Excitation energies, B(2) values, quadrupole moments and magnetic moments are compared with the experimental data available. Present study reveals the importance of proton excitations across the Z = 28 shell for predicting quadrupole and magnetic moments.


Sign in / Sign up

Export Citation Format

Share Document