Review lecture - Recent advances in the numerical prediction of weather and climate

The lecture describes recent advances in the use of physico-mathematical models to forecast the weather over the Northern Hemisphere for up to 3 days ahead with some general indications of developments up to 6 days in advance. A higher-resolution model is used to predict the evolution of smaller weather systems such as fronts and their associated rainfall over western Europe up to 36 h ahead. Examples of such forecasts, each of which involves some 10 10 numerical operations on the computer, are presented together with their verification by conventional and satellite observations. Complex mathematical models are also being used to simulate the global climate and to assess the probable influence of variations in the Sun’s radiation, the carbon dioxide and dust content of the atmosphere, vegetation, ice and snow cover, and sea surface temperatures. The results of model experiments to investigate the likely impact of man-made activities on the climate, for example the effects of increasing carbon dioxide, and of the release of nitrous oxides, freons and other trace chemicals on the ozonosphere, are described.

2021 ◽  
Author(s):  
Xiao Wang ◽  
Xiaoli Wei ◽  
Gaoyin Wu ◽  
Shengqun Chen

Abstract The study of plant responses to increases in atmospheric carbon dioxide (CO2) concentration is crucial to understand and to predict the effect of future global climate change on plant adaptation and evolution. Increasing amount of nitrogen (N) can promote the positive effect of CO2, while how N forms would modify the degree of CO2 effect is rarely studied. The aim of this study was to determine whether the amount and form of nitrogen (N) could mitigate the effects of elevated CO2 (eCO2) on enzyme activities related to carbon (C) and N metabolism, the C/N ratio, and growth of Phoebe bournei (Hemsl.) Y.C. Yang. One-year-old P. bournei seedlings were grown in an open-top air chamber under either an ambient CO2 (aCO2) (350 ± 70 μmol•mol−1) or an eCO2 (700 ± 10 μmol•mol−1) concentration and cultivated in soil treated with either moderate (0.8 g per seedling) or high applications (1.2 g per seedling) of nitrate or ammonium. In seedlings treated with a moderate level of nitrate, the activities of key enzymes involved in C and N metabolism (i.e., Rubisco, Rubisco activase and glutamine synthetase) were lower under eCO2 than under aCO2. By contrast, key enzyme activities (except GS) in seedlings treated with high nitrate or ammonium were not significantly different between aCO2 and eCO2 or higher under eCO2 than under aCO2. The C/N ratio of seedlings treated with moderate or high nitrate under eCO2was significantly changed compared with the seedlings grown under aCO2, whereas the C/N ratio of seedlings treated with ammonium was not significantly different between aCO2 and eCO2. Therefore, under eCO2, application of ammonium can be beneficial C and N metabolism and mitigate effects on the C/N ratio.


2021 ◽  
Vol 10 (8) ◽  
pp. 500
Author(s):  
Lianwei Li ◽  
Yangfeng Xu ◽  
Cunjin Xue ◽  
Yuxuan Fu ◽  
Yuanyu Zhang

It is important to consider where, when, and how the evolution of sea surface temperature anomalies (SSTA) plays significant roles in regional or global climate changes. In the comparison of where and when, there is a great challenge in clearly describing how SSTA evolves in space and time. In light of the evolution from generation, through development, and to the dissipation of SSTA, this paper proposes a novel approach to identifying an evolution of SSTA in space and time from a time-series of a raster dataset. This method, called PoAIES, includes three key steps. Firstly, a cluster-based method is enhanced to explore spatiotemporal clusters of SSTA, and each cluster of SSTA at a time snapshot is taken as a snapshot object of SSTA. Secondly, the spatiotemporal topologies of snapshot objects of SSTA at successive time snapshots are used to link snapshot objects of SSTA into an evolution object of SSTA, which is called a process object. Here, a linking threshold is automatically determined according to the overlapped areas of the snapshot objects, and only those snapshot objects that meet the specified linking threshold are linked together into a process object. Thirdly, we use a graph-based model to represent a process object of SSTA. A node represents a snapshot object of SSTA, and an edge represents an evolution between two snapshot objects. Using a number of child nodes from an edge’s parent node and a number of parent nodes from the edge’s child node, a type of edge (an evolution relationship) is identified, which shows its development, splitting, merging, or splitting/merging. Finally, an experiment on a simulated dataset is used to demonstrate the effectiveness and the advantages of PoAIES, and a real dataset of satellite-SSTA is used to verify the rationality of PoAIES with the help of ENSO’s relevant knowledge, which may provide new references for global change research.


2020 ◽  
Vol 49 (8) ◽  
pp. 2381-2396 ◽  
Author(s):  
Philipp Gotico ◽  
Zakaria Halime ◽  
Ally Aukauloo

The progress in CO2 reduction catalyst design was examined starting from simple metalloporphyrin structures and progressing to three-dimensional active architectures.


2005 ◽  
Vol 18 (23) ◽  
pp. 5179-5182 ◽  
Author(s):  
Patrick J. Michaels ◽  
Paul C. Knappenberger ◽  
Christopher Landsea

Abstract In a simulation of enhanced tropical cyclones in a warmer world, Knutson and Tuleya make several assumptions that are not borne out in the real world. They include an unrealistically large carbon dioxide growth rate, an overly strong relationship between sea surface temperature and hurricane intensity, and the use of a mesoscale model that has shown little to no useful skill in predicting current-day hurricane intensity. After accounting for these inaccuracies, a detectable increase in Atlantic hurricane intensity in response to growing atmospheric greenhouse gas levels during this century becomes unlikely.


2015 ◽  
Vol 11 ◽  
pp. 3-9 ◽  
Author(s):  
Yusheng Qin ◽  
Xingfeng Sheng ◽  
Shunjie Liu ◽  
Guanjie Ren ◽  
Xianhong Wang ◽  
...  

2021 ◽  
Author(s):  
Franziska Lechleitner ◽  
Christopher C. Day ◽  
Oliver Kost ◽  
Micah Wilhelm ◽  
Negar Haghipour ◽  
...  

<p>Terrestrial ecosystems are intimately linked with the global climate system, but their response to ongoing and future anthropogenic climate change remains poorly understood. Reconstructing the response of terrestrial ecosystem processes over past periods of rapid and substantial climate change can serve as a tool to better constrain the sensitivity in the ecosystem-climate response.</p><p>In this talk, we will present a new reconstruction of soil respiration in the temperate region of Western Europe based on speleothem carbon isotopes (δ<sup>13</sup>C). Soil respiration remains poorly constrained over past climatic transitions, but is critical for understanding the global carbon cycle and its response to ongoing anthropogenic warming. Our study builds upon two decades of speleothem research in Western Europe, which has shown clear correlation between δ<sup>13</sup>C and regional temperature reconstructions during the last glacial and the deglaciation, with exceptional regional coherency in timing, amplitude, and absolute δ<sup>13</sup>C variation. By combining innovative multi-proxy geochemical analysis (δ<sup>13</sup>C, Ca isotopes, and radiocarbon) on three speleothems from Northern Spain, and quantitative forward modelling of processes in soil, karst, and cave, we show how deglacial variability in speleothem δ<sup>13</sup>C is best explained by increasing soil respiration. Our study is the first to quantify and remove the effects of prior calcite precipitation (PCP, using Ca isotopes) and bedrock dissolution (open vs closed system, using the radiocarbon reservoir effect) from the speleothem δ<sup>13</sup>C signal to derive changes in respired δ<sup>13</sup>C over time. Our approach allows us to estimate the temperature sensitivity of soil respiration (Q<sub>10</sub>), which is higher than current measurements, suggesting that part of the speleothem signal may be related to a change in the composition of the soil respired δ<sup>13</sup>C. This is likely related to changing substrate through increasing contribution from vegetation biomass with the onset of the Holocene.</p><p>These results highlight the exciting possibilities speleothems offer as a coupled archive for quantitative proxy-based reconstructions of climate and ecosystem conditions.</p>


2021 ◽  
Author(s):  
Sandeep Pimparkar ◽  
Aishwarya K. Dalvi ◽  
Adithyaraj Koodan ◽  
Siddhartha Maiti ◽  
Shaeel Al-Thabaiti ◽  
...  

Carbon dioxide (CO2) has emerged as one of the exciting cost-effective, abundant, and ready-to-use C1 sources in synthetic organic chemistry. However, the thermodynamic stability, as well as the kinetic inertness,...


Author(s):  
Haoyue Zhang ◽  
Fang Song

Electrocatalysts are essential for the widespread of promising electrochemical energy conversion/storage technologies, where oxygen reduction/evolution reaction (ORR/OER), hydrogen evolution reaction (HER), and carbon dioxide reduction reaction (CRR) are intensively involved....


2015 ◽  
Vol 14 (1) ◽  
pp. 99-112 ◽  
Author(s):  
Tong-ming Su ◽  
Zu-zeng Qin ◽  
Hong-bing Ji ◽  
Yue-xiu Jiang ◽  
Guan Huang

Sign in / Sign up

Export Citation Format

Share Document