Size dependence and stochastic nature of yield strength of micron-sized crystals: a case study on Ni 3 Al

Author(s):  
A.H.W Ngan ◽  
L Zuo ◽  
P.C Wo

Recent experiments indicate that the first yield point of micron-sized metals exhibits significant statistical scatter as well as strong dependence on the specimen size. In this work, molecular dynamics (MD) simulations are carried out to investigate the onset of shear deformation in a small block of material, using an embedded atom potential for the intermetallic Ni 3 Al alloy. Incipient plasticity in the form of homogeneous dislocation generation is observed to occur at atomic sites with interatomic displacements approaching one-half of the Shockley partial Burgers vector. From the distribution function of the interatomic displacements observed in the MD simulations, the probability of a general material volume surviving under given loading conditions is predicted. The survival probability is then calculated for several situations, including homogeneous deformation and nanoindentation, to predict the critical load for incipient plasticity to occur in these situations. The predicted results are compared to micro-pillar compression and nanoindentation experiments on Ni 3 Al available in the literature.

2011 ◽  
Vol 172-174 ◽  
pp. 670-675 ◽  
Author(s):  
Ivailo S. Atanasov ◽  
Marc Hou

We address the question of the evolution of a nanostructured system in a metastable state to equilibrium. To this purpose, we use the case study of the transition of an AucorePdshell nanoalloy cluster containing up to about 600 atoms toward the equilibrium Au segregated configuration. We start from a molecular dynamics approach with an embedded atom potential. The way the transition develops at low temperatures is found to be very sensitive to the cluster morphology and the way energy is exchanged with the environment. The transition of icosahedral inverse core-shell Au-Pd clusters is predicted to nucleate locally at the surface contrary to clusters with other morphologies, and starting at lower temperatures compared to them.


1988 ◽  
Vol 141 ◽  
Author(s):  
S. Charpenay ◽  
P.C. Clapp ◽  
J.A. Rifkin ◽  
Z.Z. Yu ◽  
A.F. Voter

AbstractUsing an Embedded Atom Method calculation of the interatomic potentials and volume forces in the Ni-Al alloy system, we have examined the plastic and elastic response of an ordered bcc Ni-Al crystal with a pre-existing crack under Mode I loading at various temperatures, stresses and crystal orientation. Depending upon those conditions we found evidence of slip and dislocation generation near the crack tip concomitant with crack propagation. we also saw evidence of a brittle to ductile transition above a certain temperature which is manifested by copious slip and dislocation production. Atomic arrays up to 4000 atoms have been studied.


1992 ◽  
Vol 278 ◽  
Author(s):  
J. A. Rifkin ◽  
C. S. Becquart ◽  
D. Kim ◽  
P. C. Clapp

AbstractWe have carried out a series of atomistic simulations on arrays of about 10,000 atoms containing an atomically sharp crack and subjected to increasing stress levels. The ordered stoichiometric alloys B2 NiAl, B2 RuAl and A15 Nb3AI have been studied at different temperatures and stress levels, as well as the elements Al, Ni, Nb and Ru. The many body interactions used in the simulations were derived semi-empirically, using techniques related to the Embedded Atom Method. Trends in dislocation generation rates and crack propagation modes will be discussed and compared to experimental indications where possible, and some of the simulations will be demonstrated in the form of computer movies.


NANO ◽  
2015 ◽  
Vol 10 (02) ◽  
pp. 1550024 ◽  
Author(s):  
S. Kamal Jalali ◽  
M. Hassan Naei ◽  
Nicola Maria Pugno

Application of single layered graphene sheets (SLGSs) as resonant sensors in detection of ultra-fine nanoparticles (NPs) is investigated via molecular dynamics (MD) and nonlocal elasticity approaches. To take into consideration the effect of geometric nonlinearity, nonlocality and atomic interactions between SLGSs and NPs, a nonlinear nonlocal plate model carrying an attached mass-spring system is introduced and a combination of pseudo-spectral (PS) and integral quadrature (IQ) methods is proposed to numerically determine the frequency shifts caused by the attached metal NPs. In MD simulations, interactions between carbon–carbon, metal–metal and metal–carbon atoms are described by adaptive intermolecular reactive empirical bond order (AIREBO) potential, embedded atom method (EAM), and Lennard–Jones (L–J) potential, respectively. Nonlocal small-scale parameter is calibrated by matching frequency shifts obtained by nonlocal and MD simulation approaches with same vibration amplitude. The influence of nonlinearity, nonlocality and distribution of attached NPs on frequency shifts and sensitivity of the SLGS sensors are discussed in detail.


1994 ◽  
Vol 364 ◽  
Author(s):  
M. Ludwig ◽  
P. Gumbsch

AbstractThe atomistic processes during fracture of NiAl are studied using a new embedded atom (EAM) potential to describe the region near the crack tip. To provide the atomistically modeled crack tip region with realistic boundary conditions, a coupled finite element - atomistic (FEAt) technique [1] is employed. In agreement with experimental observations, perfectly brittle cleavage is observed for the (110) crack plane. In contrast, cracks on the (100) plane either follow a zig-zag path on (110) planes, or emit dislocations. Dislocation generation is studied in more detail under mixed mode I/II loading conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ken-ichi Saitoh ◽  
Kohei Kuramitsu ◽  
Tomohiro Sato ◽  
Masanori Takuma ◽  
Yoshimasa Takahashi

As for magnesium (Mg) alloys, it has been noted that they are inferior to plastic deformation, but improvement in the mechanical properties by further refinement of grain size has been recently suggested. It means the importance of atomistic view of polycrystalline interface of Mg crystal. In this study, to discuss the deformation mechanism of polycrystalline Mg, atomistic grain boundary (GB) models by using coincidence site lattice (CSL) theory are constructed and are simulated for their relaxed and deformatted structures. First, GB structures in which the axis of rotation is in [11¯00] direction are relaxed at 10 Kelvin, and the GB energies are evaluated. Then, the deformation mechanism of each GB model under uniaxial tensile loading is observed by using the molecular dynamics (MD) method. The present MD simulations are based on embedded atom method (EAM) potential for Mg crystal. As a result, we were able to observe atomistically a variety of GB structures and to recognize significant difference in deformation mechanism between low-angle GBs and high-angle GBs. A close scrutiny is made on phenomena of dislocation emission processes peculiar to each atomistic local structure in high-angle GBs.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5351
Author(s):  
Ahmed Tamer AlMotasem ◽  
Matthias Posselt ◽  
Tomas Polcar

In the present work, modified embedded atom potential and large-scale molecular dynamics’ simulations were used to explore the effect of grain boundary (GB) segregated foreign interstitials on the deformation behavior of nanocrystalline (nc) iron. As a case study, carbon and nitrogen (about 2.5 at.%) were added to (nc) iron. The tensile test results showed that, at the onset of plasticity, grain boundary sliding mediated was dominated, whereas both dislocations and twinning were prevailing deformation mechanisms at high strain. Adding C/N into GBs reduces the free excess volume and consequently increases resistance to GB sliding. In agreement with experiments, the flow stress increased due to the presence of carbon or nitrogen and carbon had the stronger impact. Additionally, the simulation results revealed that GB reduction and suppressing GBs’ dislocation were the primary cause for GB strengthening. Moreover, we also found that the stress required for both intragranular dislocation and twinning nucleation were strongly dependent on the solute type.


Crystals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 579 ◽  
Author(s):  
Wang ◽  
Jin ◽  
Yang ◽  
Zong ◽  
Peng

The adhesion feature of graphene on metal substrates is important in graphene synthesis, transfer and applications, as well as for graphene-reinforced metal matrix composites. We investigate the adhesion energy of graphene nanosheets (GNs) on iron substrate using molecular dynamic (MD) simulations. Two Fe–C potentials are examined as Lennard–Jones (LJ) pair potential and embedded-atom method (EAM) potential. For LJ potential, the adhesion energies of monolayer GN are 0.47, 0.62, 0.70 and 0.74 J/m2 on the iron {110}, {111}, {112} and {100} surfaces, respectively, compared to the values of 26.83, 24.87, 25.13 and 25.01 J/m2 from EAM potential. When the number of GN layers increases from one to three, the adhesion energy from EAM potential increases. Such a trend is not captured by LJ potential. The iron {110} surface is the most adhesive surface for monolayer, bilayer and trilayer GNs from EAM potential. The results suggest that the LJ potential describes a weak bond of Fe–C, opposed to a hybrid chemical and strong bond from EAM potential. The average vertical distances between monolayer GN and four iron surfaces are 2.0–2.2 Å from LJ potential and 1.3–1.4 Å from EAM potential. These separations are nearly unchanged with an increasing number of layers. The ABA-stacked GN is likely to form on lower-index {110} and {100} surfaces, while the ABC-stacked GN is preferred on higher-index {111} surface. Our insights of the graphene adhesion mechanics might be beneficial in graphene growing, surface engineering and enhancement of iron using graphene sheets.


Sign in / Sign up

Export Citation Format

Share Document