scholarly journals An inverse method for determining the spatially resolved properties of viscoelastic–viscoplastic three-dimensional printed materials

Author(s):  
X. Chen ◽  
I. A. Ashcroft ◽  
R. D. Wildman ◽  
C. J. Tuck

A method using experimental nanoindentation and inverse finite-element analysis (FEA) has been developed that enables the spatial variation of material constitutive properties to be accurately determined. The method was used to measure property variation in a three-dimensional printed (3DP) polymeric material. The accuracy of the method is dependent on the applicability of the constitutive model used in the inverse FEA, hence four potential material models: viscoelastic, viscoelastic–viscoplastic, nonlinear viscoelastic and nonlinear viscoelastic–viscoplastic were evaluated, with the latter enabling the best fit to experimental data. Significant changes in material properties were seen in the depth direction of the 3DP sample, which could be linked to the degree of cross-linking within the material, a feature inherent in a UV-cured layer-by-layer construction method. It is proposed that the method is a powerful tool in the analysis of manufacturing processes with potential spatial property variation that will also enable the accurate prediction of final manufactured part performance.

2007 ◽  
Vol 22 (3) ◽  
pp. 763-769 ◽  
Author(s):  
Jae-Woong Nah ◽  
Kai Chen ◽  
K.N. Tu ◽  
Bor-Rung Su ◽  
Chih Chen

The electromigration-induced failure in flip-chip eutectic SnPb solder joints with a 10-μm-thick Cu under-bump metallization (UBM) was studied without the effect of current crowding in the solder region. The current crowding occurred inside the UBM instead of in the solder joint at the current density of 3.0 × 104 A/cm2 because of the spreading of current in the very thick Cu UBM. In these joints, the failure occurred through a two-stage consumption of the thick Cu UBM in the joint where electrons flowed from the chip to the substrate. In the first stage, the Cu UBM dissolved layer by layer rather uniformly across the entire Cu UBM–solder interface. In the second stage, after half of the Cu UBM was dissolved, an asymmetrical dissolution of Cu UBM took place at the corner where electrons entered from the Al interconnect to the Cu UBM. Experimental observation of dissolution steps of the 10-μm-thick Cu UBM is presented. The transition from the first stage to the second stage has been found to depend on the location of current crowding in the flip-chip joints as the UBM thickness changes during the electromigration test. The current distribution in the flip-chip solder joints as a function of UBM thickness was simulated by three-dimensional finite element analysis. The dissolution rate of Cu UBM in the second stage was faster than that in the first stage. The mechanism of electromigration-induced failure in the flip-chip solder joints with a 10-μm-thick Cu UBM is discussed.


Author(s):  
Yi Chen ◽  
Lloyd V. Smith

AbstractIn this study, we consider the nonlinear viscoelastic–viscoplastic behavior of adhesive films in scarf joints. We develop a three-dimensional nonlinear model, which combines a nonlinear viscoelastic model with a viscoplastic model using the von Mises yield criterion and nonlinear kinematic hardening. We implement an iterative scheme for the viscoplastic solution and a numerical algorithm with stress correction for the combined viscoelastic–viscoplastic model into finite element analysis. The viscoelastic component of the model is calibrated using creep-recovery data from adhesive films in scarf joints. The viscoplastic parameters are calibrated from the residual strains of recovered creep tests with varying load durations. A two-dimensional form of the model shows good agreement with the three-dimensional model for the scarf joint considered in this work and is compared with experiment. The numerical results show favorable agreement with the experimental creep and recovery responses of two epoxy adhesive systems. We also discuss the contribution of nonlinear viscoelasticity and viscoplasticity to the stress/strain distribution along the adhesive center lines. Viscoplasticity tends to lower the stress concentration.


2021 ◽  
Author(s):  
PRADIPTA MAITI ◽  
Debjani Mitra

Abstract In this paper, a novel texture-patch transformed (TPT) three dimensional (3D) matrix completion (MC) method has been proposed with the support of novel 3D measuring points (MPs) locating algorithm to generate practical received signal strength (RSS) database assisted indoor 3D radio environment map (REM) of ultra-high frequency (UHF) television (TV)-band. The exploration of TV-band results in TV white and grey space (TV-WS and TV-GS), which are competent resolution to recoup excess data traffic through cognitive radio networks (CRNs) by dynamic spectrum access (DSA) by secondary user (SU). Maximum wireless data traffic generates in indoor and altitude considered exploration of REM achieves high data rate, so selecting interpolation algorithm is important for getting accurate and timely generated REM. Many MC algorithm shows better results than standard interpolation methods. Instead of using layer-by-layer MC algorithm, TPT-MC algorithm could be used through 3D↔2D conversion. Patch size has been considered through symmetric dataset profile. MC criteria based analysis shows TPT-MC algorithm takes lesser no. of MPs than layer-by-layer MC algorithm. Singular value thresholding (SVT) algorithm is used MC algorithm. TPT-SVT shows advantage over layer-by-layer SVT algorithm on RMSE, correlation, best-fit-line and simulation time on same no. of dataset. The result analysis shows that TPT-SVT algorithm is better in RMSE, closest best-fit-line and correlation coefficient than 2D IDW2, 2D K-NN, 2D kriging, TPT-IDW2, TPT-K-NN, TPT-kriging, 3D IDW2 and layer-by-layer SVT algorithm. Computation time of TPT-SVT is better than 3D IDW2 and SVT. TPT-SVT algorithm takes lesser no. of dataset than SVT algorithm for faithful MC.


2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Snehal Chokhandre ◽  
Jason P. Halloran ◽  
Antonie J. van den Bogert ◽  
Ahmet Erdemir

Quantification of plantar tissue behavior of the heel pad is essential in developing computational models for predictive analysis of preventive treatment options such as footwear for patients with diabetes. Simulation based studies in the past have generally adopted heel pad properties from the literature, in return using heel-specific geometry with material properties of a different heel. In exceptional cases, patient-specific material characterization was performed with simplified two-dimensional models, without further evaluation of a heel-specific response under different loading conditions. The aim of this study was to conduct an inverse finite element analysis of the heel in order to calculate heel-specific material properties in situ. Multidimensional experimental data available from a previous cadaver study by Erdemir et al. (“An Elaborate Data Set Characterizing the Mechanical Response of the Foot,” ASME J. Biomech. Eng., 131(9), pp. 094502) was used for model development, optimization, and evaluation of material properties. A specimen-specific three-dimensional finite element representation was developed. Heel pad material properties were determined using inverse finite element analysis by fitting the model behavior to the experimental data. Compression dominant loading, applied using a spherical indenter, was used for optimization of the material properties. The optimized material properties were evaluated through simulations representative of a combined loading scenario (compression and anterior-posterior shear) with a spherical indenter and also of a compression dominant loading applied using an elevated platform. Optimized heel pad material coefficients were 0.001084 MPa (μ), 9.780 (α) (with an effective Poisson’s ratio (ν) of 0.475), for a first-order nearly incompressible Ogden material model. The model predicted structural response of the heel pad was in good agreement for both the optimization (<1.05% maximum tool force, 0.9% maximum tool displacement) and validation cases (6.5% maximum tool force, 15% maximum tool displacement). The inverse analysis successfully predicted the material properties for the given specimen-specific heel pad using the experimental data for the specimen. The modeling framework and results can be used for accurate predictions of the three-dimensional interaction of the heel pad with its surroundings.


Author(s):  
John C. Russ

Three-dimensional (3D) images consisting of arrays of voxels can now be routinely obtained from several different types of microscopes. These include both the transmission and emission modes of the confocal scanning laser microscope (but not its most common reflection mode), the secondary ion mass spectrometer, and computed tomography using electrons, X-rays or other signals. Compared to the traditional use of serial sectioning (which includes sequential polishing of hard materials), these newer techniques eliminate difficulties of alignment of slices, and maintain uniform resolution in the depth direction. However, the resolution in the z-direction may be different from that within each image plane, which makes the voxels non-cubic and creates some difficulties for subsequent analysis.


Author(s):  
Nurullah Türker ◽  
Hümeyra Tercanlı Alkış ◽  
Steven J Sadowsky ◽  
Ulviye Şebnem Büyükkaplan

An ideal occlusal scheme plays an important role in a good prognosis of All-on-Four applications, as it does for other implant therapies, due to the potential impact of occlusal loads on implant prosthetic components. The aim of the present three-dimensional (3D) finite element analysis (FEA) study was to investigate the stresses on abutments, screws and prostheses that are generated by occlusal loads via different occlusal schemes in the All-on-Four concept. Three-dimensional models of the maxilla, mandible, implants, implant substructures and prostheses were designed according to the All-on-Four concept. Forces were applied from the occlusal contact points formed in maximum intercuspation and eccentric movements in canine guidance occlusion (CGO), group function occlusion (GFO) and lingualized occlusion (LO). The von Mises stress values for abutment and screws and deformation values for prostheses were obtained and results were evaluated comparatively. It was observed that the stresses on screws and abutments were more evenly distributed in GFO. Maximum deformation values for prosthesis were observed in the CFO model for lateral movement both in the maxilla and mandible. Within the limits of the present study, GFO may be suggested to reduce stresses on screws, abutments and prostheses in the All-on-Four concept.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


Sign in / Sign up

Export Citation Format

Share Document