scholarly journals Three Dimensional Measuring Points Locating Algorithm Based Texture-Patched Matrix Completion Algorithm for Indoor 3D REM Design

Author(s):  
PRADIPTA MAITI ◽  
Debjani Mitra

Abstract In this paper, a novel texture-patch transformed (TPT) three dimensional (3D) matrix completion (MC) method has been proposed with the support of novel 3D measuring points (MPs) locating algorithm to generate practical received signal strength (RSS) database assisted indoor 3D radio environment map (REM) of ultra-high frequency (UHF) television (TV)-band. The exploration of TV-band results in TV white and grey space (TV-WS and TV-GS), which are competent resolution to recoup excess data traffic through cognitive radio networks (CRNs) by dynamic spectrum access (DSA) by secondary user (SU). Maximum wireless data traffic generates in indoor and altitude considered exploration of REM achieves high data rate, so selecting interpolation algorithm is important for getting accurate and timely generated REM. Many MC algorithm shows better results than standard interpolation methods. Instead of using layer-by-layer MC algorithm, TPT-MC algorithm could be used through 3D↔2D conversion. Patch size has been considered through symmetric dataset profile. MC criteria based analysis shows TPT-MC algorithm takes lesser no. of MPs than layer-by-layer MC algorithm. Singular value thresholding (SVT) algorithm is used MC algorithm. TPT-SVT shows advantage over layer-by-layer SVT algorithm on RMSE, correlation, best-fit-line and simulation time on same no. of dataset. The result analysis shows that TPT-SVT algorithm is better in RMSE, closest best-fit-line and correlation coefficient than 2D IDW2, 2D K-NN, 2D kriging, TPT-IDW2, TPT-K-NN, TPT-kriging, 3D IDW2 and layer-by-layer SVT algorithm. Computation time of TPT-SVT is better than 3D IDW2 and SVT. TPT-SVT algorithm takes lesser no. of dataset than SVT algorithm for faithful MC.

Author(s):  
X. Chen ◽  
I. A. Ashcroft ◽  
R. D. Wildman ◽  
C. J. Tuck

A method using experimental nanoindentation and inverse finite-element analysis (FEA) has been developed that enables the spatial variation of material constitutive properties to be accurately determined. The method was used to measure property variation in a three-dimensional printed (3DP) polymeric material. The accuracy of the method is dependent on the applicability of the constitutive model used in the inverse FEA, hence four potential material models: viscoelastic, viscoelastic–viscoplastic, nonlinear viscoelastic and nonlinear viscoelastic–viscoplastic were evaluated, with the latter enabling the best fit to experimental data. Significant changes in material properties were seen in the depth direction of the 3DP sample, which could be linked to the degree of cross-linking within the material, a feature inherent in a UV-cured layer-by-layer construction method. It is proposed that the method is a powerful tool in the analysis of manufacturing processes with potential spatial property variation that will also enable the accurate prediction of final manufactured part performance.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2239
Author(s):  
Nicholas Rodriguez ◽  
Samantha Ruelas ◽  
Jean-Baptiste Forien ◽  
Nikola Dudukovic ◽  
Josh DeOtte ◽  
...  

Recent advances in additive manufacturing, specifically direct ink writing (DIW) and ink-jetting, have enabled the production of elastomeric silicone parts with deterministic control over the structure, shape, and mechanical properties. These new technologies offer rapid prototyping advantages and find applications in various fields, including biomedical devices, prosthetics, metamaterials, and soft robotics. Stereolithography (SLA) is a complementary approach with the ability to print with finer features and potentially higher throughput. However, all high-performance silicone elastomers are composites of polysiloxane networks reinforced with particulate filler, and consequently, silicone resins tend to have high viscosities (gel- or paste-like), which complicates or completely inhibits the layer-by-layer recoating process central to most SLA technologies. Herein, the design and build of a digital light projection SLA printer suitable for handling high-viscosity resins is demonstrated. Further, a series of UV-curable silicone resins with thiol-ene crosslinking and reinforced by a combination of fumed silica and MQ resins are also described. The resulting silicone elastomers are shown to have tunable mechanical properties, with 100–350% elongation and ultimate tensile strength from 1 to 2.5 MPa. Three-dimensional printed features of 0.4 mm were achieved, and complexity is demonstrated by octet-truss lattices that display negative stiffness.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Amy E. Alexander ◽  
Nicole Wake ◽  
Leonid Chepelev ◽  
Philipp Brantner ◽  
Justin Ryan ◽  
...  

AbstractFirst patented in 1986, three-dimensional (3D) printing, also known as additive manufacturing or rapid prototyping, now encompasses a variety of distinct technology types where material is deposited, joined, or solidified layer by layer to create a physical object from a digital file. As 3D printing technologies continue to evolve, and as more manuscripts describing these technologies are published in the medical literature, it is imperative that standardized terminology for 3D printing is utilized. The purpose of this manuscript is to provide recommendations for standardized lexicons for 3D printing technologies described in the medical literature. For all 3D printing methods, standard general ISO/ASTM terms for 3D printing should be utilized. Additional, non-standard terms should be included to facilitate communication and reproducibility when the ISO/ASTM terms are insufficient in describing expository details. By aligning to these guidelines, the use of uniform terms for 3D printing and the associated technologies will lead to improved clarity and reproducibility of published work which will ultimately increase the impact of publications, facilitate quality improvement, and promote the dissemination and adoption of 3D printing in the medical community.


2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 13 ◽  
Author(s):  
Bin Zhang ◽  
Jaehyun Lee ◽  
Mincheol Kim ◽  
Naeeung Lee ◽  
Hyungdong Lee ◽  
...  

The macroscopic assembly of two-dimensional materials into a laminar structure has received considerable attention because it improves both the mechanical and chemical properties of the original materials. However, conventional manufacturing methods have certain limitations in that they require a high temperature process, use toxic solvents, and are considerably time consuming. Here, we present a new system for the self-assembly of layer-by-layer (LBL) graphene oxide (GO) via an electrohydrodynamic (EHD) jet printing technique. During printing, the orientation of GO flakes can be controlled by the velocity distribution of liquid jet and electric field-induced alignment spontaneously. Closely-packed GO patterns with an ordered laminar structure can be rapidly realized using an interfacial assembly process on the substrates. The surface roughness and electrical conductivity of the LBL structure were significantly improved compared with conventional dispensing methods. We further applied this technique to fabricate a reduced graphene oxide (r-GO)-based supercapacitor and a three-dimensional (3D) metallic grid hybrid ammonia sensor. We present the EHD-assisted assembly of laminar r-GO structures as a new platform for preparing high-performance energy storage devices and sensors.


2013 ◽  
Vol 315 ◽  
pp. 63-67 ◽  
Author(s):  
Muhammad Fahad ◽  
Neil Hopkinson

Rapid prototyping refers to building three dimensional parts in a tool-less, layer by layer manner using the CAD geometry of the part. Additive Manufacturing (AM) is the name given to the application of rapid prototyping technologies to produce functional, end use items. Since AM is relatively new area of manufacturing processes, various processes are being developed and analyzed for their performance (mainly speed and accuracy). This paper deals with the design of a new benchmark part to analyze the flatness of parts produced on High Speed Sintering (HSS) which is a novel Additive Manufacturing process and is currently being developed at Loughborough University. The designed benchmark part comprised of various features such as cubes, holes, cylinders, spheres and cones on a flat base and the build material used for these parts was nylon 12 powder. Flatness and curvature of the base of these parts were measured using a coordinate measuring machine (CMM) and the results are discussed in relation to the operating parameters of the process.The result show changes in the flatness of part with the depth of part in the bed which is attributed to the thermal gradient within the build envelope during build.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 866
Author(s):  
A. R. Damanpack ◽  
André Sousa ◽  
M. Bodaghi

This paper shows how fused decomposition modeling (FDM), as a three-dimensional (3D) printing technology, can engineer lightweight porous foams with controllable density. The tactic is based on the 3D printing of Poly Lactic Acid filaments with a chemical blowing agent, as well as experiments to explore how FDM parameters can control material density. Foam porosity is investigated in terms of fabrication parameters such as printing temperature and flow rate, which affect the size of bubbles produced during the layer-by-layer fabrication process. It is experimentally shown that printing temperature and flow rate have significant effects on the bubbles’ size, micro-scale material connections, stiffness and strength. An analytical equation is introduced to accurately simulate the experimental results on flow rate, density, and mechanical properties in terms of printing temperature. Due to the absence of a similar concept, mathematical model and results in the specialized literature, this paper is likely to advance the state-of-the-art lightweight foams with controllable porosity and density fabricated by FDM 3D printing technology.


1988 ◽  
Vol 116 ◽  
Author(s):  
R.A. Rudder ◽  
S.V. Hattangady ◽  
D.J. Vitkavage ◽  
R.J. Markunas

Heteroepitaxial growth of Ge on Si(100) has been accomplished using remote plasma enhanced chemical vapor deposition at 300*#x00B0;C. Reconstructed surfaces with diffraction patterns showing non-uniform intensity variations along the lengths of the integral order streaks are observed during the first 100 Å of deposit. This observation of an atomically rough surface during the initial stages of growth is an indication of three-dimensional growth. As the epitaxial growth proceeds, the diffraction patterns become uniform with extensive streaking on both the integral and fractional order streaks. Subsequent growth, therefore, takes place in a layer-by-layer, two-dimensional mode. X-ray photoelectron spectroscopy of the early nucleation stages, less than 80 Å, show that there is uniform coverage with no evidence of island formation.


2004 ◽  
Vol 120 ◽  
pp. 225-230
Author(s):  
P. Mukhopadhyay ◽  
M. Loeck ◽  
G. Gottstein

A more refined 3D cellular Automata (CA) algorithm has been developed which has increased the resolution of the space and reduced the computation time and can take care of the complexity of recrystallization process through physically based solutions. This model includes recovery, condition for nucleation and orientation dependent variable nuclei growth as a process of primary static recrystallization. Incorporation of microchemistry effects makes this model suitable for simulating recrystallization behaviour in terms of texture, kinetics and microstructure of different alloys. The model is flexible to couple up with other simulation programs on a common database.


2018 ◽  
Vol 10 (8) ◽  
pp. 1264 ◽  
Author(s):  
Huaguo Huang

To enhance the capability of three-dimensional (3D) radiative transfer models at the kilometer scale (km-scale), the radiosity applicable to porous individual objects (RAPID) model has been upgraded to RAPID3. The major innovation is that the homogeneous porous object concept (HOMOBJ) used for a tree crown scale is extended to a heterogeneous porous object (HETOBJ) for a forest plot scale. Correspondingly, the radiosity-graphics-combined method has been extended from HOMOBJ to HETOBJ, including the random dynamic projection algorithm, the updated modules of view factors, the single scattering estimation, the multiple scattering solutions, and the bidirectional reflectance factor (BRF) calculations. Five cases of the third radiation transfer model intercomparison (RAMI-3) have been used to verify RAPID3 by the RAMI-3 online checker. Seven scenes with different degrees of topography (valleys and hills) at 500 m size have also been simulated. Using a personal computer (CPU 2.5 GHz, memory 4 GB), the computation time of BRF at 500 m is only approximately 13 min per scene. The mean root mean square error is 0.015. RAPID3 simulated the enhanced contrast of BRF between backward and forward directions due to topography. RAPID3 has been integrated into the free RAPID platform, which should be very useful for the remote sensing community. In addition, the HETOBJ concept may also be useful for the speedup of ray tracing models.


Sign in / Sign up

Export Citation Format

Share Document