scholarly journals Efficient generation of receiver operating characteristics for the evaluation of damage detection in practical structural health monitoring applications

Author(s):  
Chang Liu ◽  
Jacob Dobson ◽  
Peter Cawley

Permanently installed guided wave monitoring systems are attractive for monitoring large structures. By frequently interrogating the test structure over a long period of time, such systems have the potential to detect defects much earlier than with conventional one-off inspection, and reduce the time and labour cost involved. However, for the systems to be accepted under real operational conditions, their damage detection performance needs to be evaluated in these practical settings. The receiver operating characteristic (ROC) is an established performance metric for one-off inspections, but the generation of the ROC requires many test structures with realistic damage growth at different locations and different environmental conditions, and this is often impractical. In this paper, we propose an evaluation framework using experimental data collected over multiple environmental cycles on an undamaged structure with synthetic damage signatures added by superposition. Recent advances in computation power enable examples covering a wide range of practical scenarios to be generated, and for multiple cases of each scenario to be tested so that the statistics of the performance can be evaluated. The proposed methodology has been demonstrated using data collected from a laboratory pipe specimen over many temperature cycles, superposed with damage signatures predicted for a flat-bottom hole growing at different rates at various locations. Three damage detection schemes, conventional baseline subtraction, singular value decomposition (SVD) and independent component analysis (ICA), have been evaluated. It has been shown that in all cases, the component methods perform significantly better than the residual method, with ICA generally the better of the two. The results have been validated using experimental data monitoring a pipe in which a flat-bottom hole was drilled and enlarged over successive temperature cycles. The methodology can be used to evaluate the performance of an installed monitoring system and to show whether it is capable of detecting particular damage growth at any given location. It will enable monitoring results to be evaluated rigorously and will be valuable in the development of safety cases.

Diagnostica ◽  
2019 ◽  
Vol 65 (3) ◽  
pp. 179-190 ◽  
Author(s):  
Vincent Mustapha ◽  
Renate Rau

Zusammenfassung. Cut-Off-Werte ermöglichen eine ökonomische, binäre Beurteilung von Summenscores. Für Beanspruchungsfragebögen, die personenbezogene Merkmale erfragen, sind Cut-Off-Werte häufig vorhanden und in der klinischen Diagnostik unerlässlich. Für die Bewertung von Arbeitsmerkmalen sind Cut-Off-Werte ebenfalls wünschenswert. Bislang fehlen sie jedoch für die Beurteilung von Arbeitsmerkmalen wie Arbeitsintensität und Tätigkeitsspielraum. Zwischen 2006 und 2016 wurden daher in verschiedenen Branchen 801 objektive Arbeitsplatzanalysen durchgeführt, welche eine Unterteilung in gut und schlecht gestalteten Tätigkeitsspielraum sowie gut und schlecht gestaltete Arbeitsintensität nach DIN EN ISO 6385 (2016) ermöglichen. Anhand dieser Unterteilung wurden mit der Receiver-Operating-Characteristics-Analyse Cut-Off-Werte für den subjektiv-bedingungsbezogen Fragebogen zum Erleben von Arbeitsintensität und Tätigkeitsspielraum (FIT; Richter et al., 2000 ) ermittelt. Für den Tätigkeitsspielraum weisen Summenscores ≤ 22 und für die Arbeitsintensität Summenscores ≥ 15 auf eine schlechte Gestaltung des jeweiligen Arbeitsmerkmals hin. Anhand einer weiteren Stichprobe von 1 076 Arbeitenden konnte gezeigt werden, dass Arbeitende mit schlecht gestaltetem Tätigkeitspielraum vital erschöpfter sowie weniger engagiert sind und Arbeitende mit schlecht gestalteter Arbeitsintensität eine höhere Erholungsunfähigkeit sowie vitale Erschöpfung aufweisen.


Author(s):  
N. S. Aryaeva ◽  
E. V. Koptev-Dvornikov ◽  
D. A. Bychkov

A system of equations of thermobarometer for magnetite-silicate melt equilibrium was obtained by method of multidimensional statistics of 93 experimental data of a magnetite solubility in basaltic melts. Equations reproduce experimental data in a wide range of basalt compositions, temperatures and pressures with small errors. Verification of thermobarometers showed the maximum error in liquidus temperature reproducing does not exceed ±7 °C. The level of cumulative magnetite appearance in the vertical structure of Tsypringa, Kivakka, Burakovsky intrusions predicted with errors from ±10 to ±50 m.


2018 ◽  
Vol 245 ◽  
pp. 15002 ◽  
Author(s):  
Roman Davydov ◽  
Valery Antonov ◽  
Dmitry Molodtsov ◽  
Alexey Cheremisin ◽  
Vadim Korablev

The rapid spread of storm floods over large areas requires flood management throughout the river basin by the creation an innovative system of flood control facilities of various functional purposes distributed in the area. The central part of the system is the hydro system with hydro power plant. In addition, the flood control facilities on the side tributaries with self-regulating reservoir are included in the system. To assess the effect of controlling extreme water discharges by flood control facilities, it is necessary to develop special mathematical models reflecting the specifics of their operation. Unified mathematical models of the operation modes of a hydro complex with hydroelectric power station and flood control facility are created. They are implemented in a computer program that provides the ability to determine the main parameters and operating characteristics of hydro systems when performing multivariate calculations in a wide range of initial data. This makes possible specifying the parameters and operation modes of each hydro system with the current economic and environmental requirements, to assess the energy-economic and environmental consequences in the operation of the system of flood control facilities distributed in the area. The article analyses the results of the extreme water discharge’s regulation by the hydro system on the main river and flood control facilities on the side tributaries, considering environmental requirements.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 968-980
Author(s):  
Xueping Du ◽  
Zhijie Chen ◽  
Qi Meng ◽  
Yang Song

Abstract A high accuracy of experimental correlations on the heat transfer and flow friction is always expected to calculate the unknown cases according to the limited experimental data from a heat exchanger experiment. However, certain errors will occur during the data processing by the traditional methods to obtain the experimental correlations for the heat transfer and friction. A dimensionless experimental correlation equation including angles is proposed to make the correlation have a wide range of applicability. Then, the artificial neural networks (ANNs) are used to predict the heat transfer and flow friction performances of a finned oval-tube heat exchanger under four different air inlet angles with limited experimental data. The comparison results of ANN prediction with experimental correlations show that the errors from the ANN prediction are smaller than those from the classical correlations. The data of the four air inlet angles fitted separately have higher precisions than those fitted together. It is demonstrated that the ANN approach is more useful than experimental correlations to predict the heat transfer and flow resistance characteristics for unknown cases of heat exchangers. The results can provide theoretical support for the application of the ANN used in the finned oval-tube heat exchanger performance prediction.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1128
Author(s):  
Jeanne Hersant ◽  
Pierre Ramondou ◽  
Francine Thouveny ◽  
Mickael Daligault ◽  
Mathieu Feuilloy ◽  
...  

The level of pulse amplitude (PA) change in arterial digital pulse plethysmography (A-PPG) that should be used to diagnose thoracic outlet syndrome (TOS) is debated. We hypothesized that a modification of the Roos test (by moving the arms forward, mimicking a prayer position (“Pra”)) releasing an eventual compression that occurs in the surrender/candlestick position (“Ca”) would facilitate interpretation of A-PPG results. In 52 subjects, we determined the optimal PA change from rest to predict compression at imaging (ultrasonography +/− angiography) with receiver operating characteristics (ROC). “Pra”-PA was set as 100%, and PA was expressed in normalized amplitude (NA) units. Imaging found arterial compression in 23 upper limbs. The area under ROC was 0.765 ± 0.065 (p < 0.0001), resulting in a 91.4% sensitivity and a 60.9% specificity for an increase of fewer than 3 NA from rest during “Ca”, while results were 17.4% and 98.8%, respectively, for the 75% PA decrease previously proposed in the literature. A-PPG during a “Ca+Pra” test provides demonstrable proof of inflow impairment and increases the sensitivity of A-PPG for the detection of arterial compression as determined by imaging. The absence of an increase in PA during the “Ca” phase of the “Ca+Pra” maneuver should be considered indicative of arterial inflow impairment.


2021 ◽  
Vol 13 (4) ◽  
pp. 2040
Author(s):  
AbdulHafeez Muhammad ◽  
Ansar Siddique ◽  
Quadri Noorulhasan Naveed ◽  
Uzma Khaliq ◽  
Ali M. Aseere ◽  
...  

In the higher education sector, there is a growing trend to offer academic information to users through websites. Contemporarily, the users (i.e., students/teachers, parents, and administrative staff) greatly rely on these websites to perform various academic tasks, including admission, access to learning management systems (LMS), and links to other relevant resources. These users vary from each other in terms of their technological competence, objectives, and frequency of use. Therefore, academic websites should be designed considering different dimensions, so that everybody can be accommodated. Knowing the different dimensions with respect to the usability of academic websites is a multi-criteria decision-making (MCDM) problem. The fuzzy analytic hierarchy process (FAHP) approach has been considered to be a significant method to deal with the uncertainty that is involved in subjective judgment. Although a wide range of usability factors for academic websites have already been identified, most of them are based on the judgment of experts who have never used these websites. This study identified important factors through a detailed literature review, classified them, and prioritized the most critical among them through the FAHP methodology, involving relevant users to propose a usability evaluation framework for academic websites. To validate the proposed framework, five websites of renowned higher educational institutes (HEIs) were evaluated and ranked according to the usability criteria. As the proposed framework was created methodically, the authors believe that it would be helpful for detecting real usability issues that currently exist in academic websites.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ehsan Zamanzade ◽  
Xinlei Wang

AbstractRanked set sampling (RSS), known as a cost-effective sampling technique, requires that the ranker gives a complete ranking of the units in each set. Frey (2012) proposed a modification of RSS based on partially ordered sets, referred to as RSS-t in this paper, to allow the ranker to declare ties as much as he/she wishes. We consider the problem of estimating the area under a receiver operating characteristics (ROC) curve using RSS-t samples. The area under the ROC curve (AUC) is commonly used as a measure for the effectiveness of diagnostic markers. We develop six nonparametric estimators of the AUC with/without utilizing tie information based on different approaches. We then compare the estimators using a Monte Carlo simulation and an empirical study with real data from the National Health and Nutrition Examination Survey. The results show that utilizing tie information increases the efficiency of estimating the AUC. Suggestions about when to choose which estimator are also made available to practitioners.


Author(s):  
Afshin Anssari-Benam ◽  
Andrea Bucchi ◽  
Giuseppe Saccomandi

AbstractThe application of a newly proposed generalised neo-Hookean strain energy function to the inflation of incompressible rubber-like spherical and cylindrical shells is demonstrated in this paper. The pressure ($P$ P ) – inflation ($\lambda $ λ or $v$ v ) relationships are derived and presented for four shells: thin- and thick-walled spherical balloons, and thin- and thick-walled cylindrical tubes. Characteristics of the inflation curves predicted by the model for the four considered shells are analysed and the critical values of the model parameters for exhibiting the limit-point instability are established. The application of the model to extant experimental datasets procured from studies across 19th to 21st century will be demonstrated, showing favourable agreement between the model and the experimental data. The capability of the model to capture the two characteristic instability phenomena in the inflation of rubber-like materials, namely the limit-point and inflation-jump instabilities, will be made evident from both the theoretical analysis and curve-fitting approaches presented in this study. A comparison with the predictions of the Gent model for the considered data is also demonstrated and is shown that our presented model provides improved fits. Given the simplicity of the model, its ability to fit a wide range of experimental data and capture both limit-point and inflation-jump instabilities, we propose the application of our model to the inflation of rubber-like materials.


Sign in / Sign up

Export Citation Format

Share Document