Human visual pigments: microspectrophotometric results from the eyes of seven persons

The material for this work was obtained from seven eyes removed because of malignant growths. Foveal and parafoveal samples of the retinas were taken and transverse measurements were made of the absorbance spectra of the outer segments of the rods and cones, using a Liebman microspectrophotometer. Four kinds of spectra were obtained with absorbance peaks at the following wavelengths: rods, 496.3 ± 2.3 nm ( n = 39); red cones, 558.4 ± 5.2 nm ( n = 58); green cones, 530.8 ± 3.5 nm ( n = 45); blue cones, 419.0 ± 3.6 nm ( n = 5). The distribution of the peaks was unimodal for the rods. For the red and green cones, however, there was evidence for bimodal distributions, with sub-population maxima at 563.2 ± 3.1 nm ( n = 27) and 554.2 ± 2.3 nm ( n = 31) for the reds and at 533.7 ± 2.1 nm ( n = 23) and 527.8 ± 1.8 nm ( n = 22) for the greens. A substantial difference in mean spectral location of the red cones was observed between patient 1 (561 nm) and patient 4 (553 nm). Both patients were classified as normal trichromats by all clinical tests of colour vision but there was a clear difference in their relative sensitivities to long-wave fields. In both direction and magnitude, this difference proved to be that required by the microspectrophotometric results.

The squirrel monkey ( Saimiri sciureus ) exhibits a polymorphism of colour vision: some animals are dichromatic, some trichromatic, and within each of these classes there are subtypes that resemble the protan and deutan variants of human colour vision. For each of ten individual monkeys we have obtained (i) behavioural measurements of colour vision and (ii) microspectrophotometric measurements of retinal photopigments. The behavioural tests, carried out in Santa Barbara, included wavelength discrimination, Rayleigh matches, and increment sensitivity at 540 and 640 nm. The microspectrophotometric measurements were made in London, using samples of fresh retinal tissue and a modified Liebman microspectrophotometer: the absorbance spectra for single retinal cells were obtained by passing a monochromatic measuring beam through the outer segments of individual rods and cones. The two types of data, behavioural and microspectrophotometric, were obtained independently and were handed to a third party before being interchanged between experimenters. From all ten animals, a rod pigment was recorded with λ max (wavelength of peak absorbance) close to 500 nm. In several animals, receptors were found that contained a short-wave pigment (mean λ max = 433.5 nm): these violet-sensitive receptors were rare, as in man and other primate species. In the middle- to long-wave part of the spectrum, there appear to be at least three possible Saimiri photopigments (with λ max values at about 537, 550 and 565 nm) and individual animals draw either one or two pigments from this set, giving dichromatic or trichromatic colour vision. Thus, those animals that behaviourally resembled human protanopes exhibited only one pigment in the red-green range, with λ max = 537 nm ; other behaviourally dichromatic animals had single pigments lying at longer wavelengths and these were the animals that behaviourally had higher sensitivity to long wavelengths. Four of the monkeys were behaviourally judged to be trichromatic. None of the latter animals exhibited the two widely separated pigments (close to 535 and 567 nm) that are found in the middle- and long-wave cones of macaque monkeys. But the spread of λ max values for individual cones was greater in the trichromatic squirrel monkeys than in the dichromats; and in the case of three, behaviourally deuteranomalous, trichromats there wasclear evidence that the distribution of λ max values was bimodal, suggesting photopigments at approximately 552 and 565 nm. The fourth, behaviourally protanomalous, trichrom at exhibited a spread of individual λ max values that ranged between 530 and 550 nm. Good quantitative agreement was found when the microspectrophoto-metrically measured absorbance spectra were used to predict the behavioural sensitivity of individual animals to long wavelengths. The concordance of the two sets of measurements places beyond question the existence of a polymorphism of colour vision in Saimiri sciureus and suggests that the behavioural variation arises from variation in the retinal photopigments. Heterozygous advantage may explain the polymorphism.


Author(s):  
J. C. Partridge ◽  
S. N. Archer ◽  
J. Vanoostrum

The visual pigments in the retinal rods of 17 species of deep-sea fish were examined by microspectrophotometry or visual pigment extract spectrophotometry. In 15 species single visual pigments were found with peak sensitivities between 470 and 490 nm, typical of deep-sea fishes. However, in one species, Stylephorons cordatus, two visual pigments were found with λ values at 470 and 481 nm. In another species, Scopelarchus analis, three visual pigments were found with mean λ values of 444, 479 and 505 nm. The short-wave pigment of this species was found both in main and accessory retinae. It was present both in single rods and in outer segments which had the most long-wave sensitive pigment in their distal parts. It is argued that these two-pigment rods are in the process of changing their visual pigment from a ‘juvenile’ VP505 pigment to an ‘adult’ VP444 pigment. The VP479 was found only as a single pigment in rods in the accessory retina.


1972 ◽  
Vol 5 (3) ◽  
pp. 349-393 ◽  
Author(s):  
Stanley D. Carlson

Visual pigments are embedded in the disc membranes of the outer segments of vertebrate rods and cones and in the microvilli of invertebrate visual cells. The pigment molecule in both is a most fascinating aggregate of known (the ubiquitous II-cis isomer of vitamin A1 or A2-aldehyde = retinal1 or 2; Hubbard & Wald, 1952) covalently bonded to the unknown (a protein termed opsin) (Anderson, Hoffman & Hall, 1971). This conjugated molecule is called rhodopsin or dehydrorhodopsin (porphryopsin) when the prosthetic portion is retinall or 2 respectively. So sensitive is this sterically hindered, bent and twisted molecule to light that absorption of one photon can initiate its isomerization to the all trans form. This conformational change is but one (but the best known) of the factors leading to receptor membrane changes ushering in the visual impulse.


2000 ◽  
Vol 17 (4) ◽  
pp. 509-528 ◽  
Author(s):  
VICTOR I. GOVARDOVSKII ◽  
NANNA FYHRQUIST ◽  
TOM REUTER ◽  
DMITRY G. KUZMIN ◽  
KRISTIAN DONNER

Absorbance spectra were recorded by microspectrophotometry from 39 different rod and cone types representing amphibians, reptiles, and fishes, with A1- or A2-based visual pigments and λmax ranging from 357 to 620 nm. The purpose was to investigate accuracy limits of putative universal templates for visual pigment absorbance spectra, and if possible to amend the templates to overcome the limitations. It was found that (1) the absorbance spectrum of frog rhodopsin extract very precisely parallels that of rod outer segments from the same individual, with only a slight hypsochromic shift in λmax, hence templates based on extracts are valid for absorbance in situ; (2) a template based on the bovine rhodopsin extract data of Partridge and De Grip (1991) describes the absorbance of amphibian rod outer segments excellently, contrary to recent electrophysiological results; (3) the λmax/λ invariance of spectral shape fails for A1 pigments with small λmax and for A2 pigments with large λmax, but the deviations are systematic and can be readily incorporated into, for example, the Lamb (1995) template. We thus propose modified templates for the main “α-band” of A1 and A2 pigments and show that these describe both absorbance and spectral sensitivities of photoreceptors over the whole range of λmax. Subtraction of the α-band from the full absorbance spectrum leaves a “β-band” described by a λmax-dependent Gaussian. We conclude that the idea of universal templates (one for A1- and one for A2-based visual pigments) remains valid and useful at the present level of accuracy of data on photoreceptor absorbance and sensitivity. The sum of our expressions for the α- and β-band gives a good description for visual pigment spectra with λmax > 350 nm.


1999 ◽  
Vol 202 (14) ◽  
pp. 1931-1938 ◽  
Author(s):  
A.J. Sillman ◽  
J.K. Carver ◽  
E.R. Loew

The photoreceptors and visual pigments of Python regius were studied using microspectrophotometry and scanning electron microscopy. The retina contains rods and cones, with rods constituting at least 90 % of the photoreceptor population. The rods are of a single type with long, narrow outer segments and are tightly packed. The wavelength of maximum absorbance (λ max) of the visual pigment in the rods is in the region of 494 nm. Two distinct types of cone are present. The most common cone, with a stout but stubby outer segment, contains a visual pigment with λ max at approximately 551 nm. A relatively rare cone, with a long, slender outer segment, contains an ultraviolet-sensitive visual pigment with λ max at approximately 360 nm. All the visual pigments have chromophores based on vitamin A1. The results are discussed in relation to the behavior of P. regius.


2000 ◽  
Vol 17 (6) ◽  
pp. 847-854 ◽  
Author(s):  
JAMES C. RYAN ◽  
SERGEY ZNOIKO ◽  
LIN XU ◽  
ROSALIE K. CROUCH ◽  
JIAN-XING MA

The mammalian retina is known to contain two distinct transducins that interact with their respective rod and cone pigments. However, there are no reports of a nonmammalian species having two distinct transducins. In the present study, we report the cloning and cellular localization of two transducin α subunits (Gαt) from the tiger salamander. Through degenerate polymerase chain reaction (PCR) and subsequent screening of a salamander retina cDNA library, we have identified two forms of Gαt. When compared to existing sequences in GenBank, the cloned subunits showed high similarity to rod and cone transducins. The salamander Gαt-1 has 91.2–93.7% amino acid sequence identity to mammalian rod Gαt subunits and 79.7–80.9% to mammalian cone Gαts. The salamander Gαt-2 has 86.2–87.9% sequence identity to mammalian cone Gαts and 78.9–80.9% to mammalian rod Gαts at the amino acid level. The Gαt-1 cDNA encodes 350 amino acids while the Gαt-2 cDNA encodes 354 residues, which is typical for rod and cone Gαts, respectively, and we thus identified the Gαt-1 as rod and Gαt-2 as cone Gαt. Sequences identified as effector binding sites and GTPase activity regions are highly conserved between the two subunits. Genomic Southern blot analysis showed that rod and cone Gαt subunits are both encoded by single-copy genes. Northern blot analysis identified retina-specific transcripts of 3.0 kb for rod Gαt and 2.6 kb for cone Gαt. Immunohistochemistry in the flat-mounted salamander retina demonstrated that rod Gαt is localized to rods, predominantly in the outer segments; similarly, cone Gαt is localized to cone outer segments. The results confirm that the two sequences encode rod and cone transducins and demonstrate that this lower vertebrate contains two distinct transducins that are localized specifically to rod and cone photoreceptors.


Science ◽  
1964 ◽  
Vol 144 (3614) ◽  
pp. 45-52 ◽  
Author(s):  
P. K. Brown ◽  
G. Wald

2007 ◽  
Vol 85 (4) ◽  
pp. 584-587 ◽  
Author(s):  
A.J. Sillman ◽  
E.K. Ong ◽  
E.R. Loew

Lake sturgeon ( Acipenser fulvescens Rafinesque, 1817) photoreceptors were studied with scanning electron microscopy and microspectrophotometry. The retina contains both rods and cones, with cones estimated composing about 30% of the photoreceptor population. Only large single cones were identified and they are similar to those found in other species of the order Acipenseriformes. The rods are large, with long, broad outer segments, and are similar to the dominant rod found in other sturgeons and the North American paddlefish ( Polyodon spathula (Walbaum, 1792)). Mean (SD) rod packing density at 22 624 ± 3 509 rods/mm2 is low compared with those of other animals that function primarily in dim light. The visual pigment of the rods has a mean (SD) peak absorbance (λmax) at 541 ± 2 nm. Three different cone populations were identified: a long wavelength sensitive cone containing a visual pigment with λmax at 619 ± 3 nm; middle wavelength sensitive cone with λmax at 538 ± 1 nm; and short wavelength sensitive cone with λmax at 448 ± 1 nm. All the visual pigments are based on the vitamin A2 chromophore.


1971 ◽  
Vol 49 (2) ◽  
pp. 303-318 ◽  
Author(s):  
Richard W. Young

The renewal of retinal rod and cone outer segments has been studied by radioautography in rhesus monkeys examined 2 and 4 days after injection of leucine-3H. The cell outer segment consists of a stack of photosensitive, membranous discs. In both rods and cones some of the newly formed (radioactive) protein became distributed throughout the outer segment. Furthermore, in rods (but not in cones), there was a transverse band of concentrated radioactive protein slightly above the outer segment base 2 days after injection. This was due to the formation of new discs, into which labeled protein had been incorporated. At 4 days, these radioactive discs were located farther from the outer segment base. Repeated assembly of new discs had displaced them away from the basal assembly site and along the outer segment. Measurements of the displacement rate indicated that each retinal rod produces 80–90 discs per day, and that the entire complement of outer segment discs is replaced every 9–13 days. To compensate for the continual formation of new discs, groups of old discs are intermittently shed from the apical end of the cell and phagocytized by the pigment epithelium. Each pigment epithelial cell engulfs and destroys about 2000–4000 rod outer segment discs daily. The similarity between visual cells in the rhesus monkey and those in man suggests that the same renewal processes occur in the human retina.


2002 ◽  
Vol 19 (4) ◽  
pp. 467-473 ◽  
Author(s):  
IÑIGO NOVALES FLAMARIQUE ◽  
FERENC I. HÁROSI

The retinas of anchovies have two unique photoreceptor types: “bifid” and “long” cones (Fineran & Nicol, 1976). The outer segments of these cells contain multiple layers of membranes (lamellae) oriented longitudinally (axially). This orientation is distinct from that in all other vertebrate rods and cones, where the lamellae are stacked transversely with their planes perpendicular to the incident light path. Although the common arrangement provides optimal absorption for normally incident light rays, it is also insensitive to the rays' direction of vibration (i.e. their polarization). In contrast, the two mutually perpendicular sets of axially oriented lamellae segregated into bifid and long cones could function as the principal analyzers for linearly polarized light, as previously hypothesized (Fineran & Nicol, 1976, 1978). Here, we report on a microspectrophotometric study that shows (1) the presence of two spectrally distinct visual pigments in the three photoreceptor types of the bay anchovy retina; these are typical vertebrate pigments in that they bleach, when exposed to light, and have absorption spectra like all other vitamin A1-based visual pigments; (2) that the rods and cones exhibit dichroic absorption of light in accordance with their lamellar orientation, and (3) that the two cone types of the retina contain a spectrally indistinguishable pigment with peak absorbance (λmax) around 540 nm, while the rods contain a rhodopsin-like pigment with λmax near 500 nm. Compared to other vertebrates, anchovies are remarkable for using a monochromatic cone system with unusual specializations supportive of a polarization detection system.


Sign in / Sign up

Export Citation Format

Share Document