scholarly journals Fertility control as a means of controlling bovine tuberculosis in badger ( Meles meles ) populations in south–west England: predictions from a spatial stochastic simulation model

1997 ◽  
Vol 264 (1389) ◽  
pp. 1737-1747 ◽  
Author(s):  
Piran C. L. White ◽  
Alex J. G. Lewis ◽  
Stephen Harris
1995 ◽  
Vol 349 (1330) ◽  
pp. 391-413 ◽  

A spatial stochastic simulation model was developed to describe the dynamics of bovine tuberculosis in badger populations in southwest England, based on data from the literature and from unpublished sources. As there are no data on intra- and intergroup infection probabilities, estimates of these were obtained through repeated simulations based on field observations of the spread and prevalence of the disease. The model works on a grid-cell basis, with each grid cell potentially occupied by one badger social group; immigration to and emigration from the main grid are incorporated. Population regulation is assumed to occur at the group level through density-dependent fecundity and cub mortality, and the model can be run for various disease-free equilibrium group sizes (which are determined by the carrying capacity of the environment). The model works on a quarterly (three-monthly) basts and processes are stochastic at the individual level. Three classes of individual (adults, yearlings and cubs) and three classes of infection (susceptible, infected-but-not-infectious and infectious) are recognized. Bovine tuberculosis was shown to persist in badger populations for long periods of time, even in populations with a disease-free equilibrium group size of only four adults and yearlings. However, with standard rates of intergroup infection and movement, the disease only became endemic in populations with a disease-free equilibrium group size greater than six adults and yearlings. In the endemic situation the prevalence of the disease ranged between 11- 22% depending on the combination of inter- and intragroup infection probabilities used. Endemic infection within the homogeneous environment of the grid was characterized by a high degree of heterogeneity. Patches of infection were spatio-temporally unstable, but shifted in location relatively slowly. Spread of the disease from a point source of infection with standard rates of intergroup movement and infection only occurred to any marked extent in populations with disease-free equilibrium group sizes of eight or more adults and yearlings. Increasing the intergroup infection probability had a significant effect on increasing the probability and rate of spread, and considerably lowered the threshold group size for spread from a point source to around four adults and yearlings. However, increasing the rates of intergroup movement reduced the probability of spread of the disease except at the largest group sizes. When both intergroup infection and movements were increased, the effects of increased infection in enhancing spread were offset to some degree by the increased movements. Perturbation to the badger population, as may be caused by control operations, could therefore increase the probability of persistence or spread of an infection.


1995 ◽  
Vol 349 (1330) ◽  
pp. 415-432 ◽  

A spatial stochastic simulation model was used to compare the efficacy of different badger control policies and to determine the theoretical requirements for the control of endemic bovine tuberculosis in badger populations in southwest England. Culling-based strategies for controlling endemic disease were compared with strategies employing a yet-to-be-developed oral vaccine which would provide uninfected badgers with immunity to the infection. A comparative assessment was made of the efficacy of previous and proposed culling-based strategies employed by the Ministry of Agriculture, Fisheries and Food for the control of localized disease, and the potential for an oral vaccine-based strategy for the control of localized disease was examined.


2012 ◽  
Vol 43 (1-2) ◽  
pp. 54-63 ◽  
Author(s):  
Baohong Lu ◽  
Huanghe Gu ◽  
Ziyin Xie ◽  
Jiufu Liu ◽  
Lejun Ma ◽  
...  

Stochastic simulation is widely applied for estimating the design flood of various hydrosystems. The design flood at a reservoir site should consider the impact of upstream reservoirs, along with any development of hydropower. This paper investigates and applies a stochastic simulation approach for determining the design flood of a complex cascade of reservoirs in the Longtan watershed, southern China. The magnitude of the design flood when the impact of the upstream reservoirs is considered is less than that without considering them. In particular, the stochastic simulation model takes into account both systematic and historical flood records. As the reliability of the frequency analysis increases with more representative samples, it is desirable to incorporate historical flood records, if available, into the stochastic simulation model. This study shows that the design values from the stochastic simulation method with historical flood records are higher than those without historical flood records. The paper demonstrates the advantages of adopting a stochastic flow simulation approach to address design-flood-related issues for a complex cascade reservoir system.


animal ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 145-154 ◽  
Author(s):  
P.F. Mostert ◽  
E.A.M. Bokkers ◽  
C.E. van Middelaar ◽  
H. Hogeveen ◽  
I.J.M. de Boer

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248426
Author(s):  
Graham C. Smith ◽  
Richard Budgey

Industry-led culling of badgers has occurred in England to reduce the incidence of bovine tuberculosis in cattle for a number of years. Badger vaccination is also possible, and a move away from culling was “highly desirable” in a recent report to the UK government. Here we used an established simulation model to examine badger control option in a post-cull environment in England. These options included no control, various intermittent culling, badger vaccination and use of a vaccine combined with fertility control. The initial simulated cull led to a dramatic reduction in the number of infected badgers present, which increased slowly if there was no further badger management. All three approaches led to a further reduction in the number of infected badgers, with little to choose between the strategies. We do note that of the management strategies only vaccination on its own leads to a recovery of the badger population, but also an increase in the number of badgers that need to be vaccinated. We conclude that vaccination post-cull, appears to be particularly effective, compared to vaccination when the host population is at carrying capacity.


Author(s):  
Anuj Srivastava

This article develops an agent-level stochastic simulation model, termed RAW-ALPS, for simulating the spread of an epidemic in a community. The mechanism of transmission is agent-to-agent contact, using parameters reported for the COVID-19 pandemic. When unconstrained, the agents follow independent random walks and catch infections due to physical proximity with infected agents. Under lockdown, an infected agent can only infect a coinhabitant, leading to a reduction in the spread. The main goal of the RAW-ALPS simulation is to help quantify the effects of preventive measures—timing and durations of lockdowns—on infections, fatalities, and recoveries. The model helps measure changes in infection rates and casualties due to the imposition and maintenance of restrictive measures. It considers three types of lockdowns: 1) whole population (except the essential workers), 2) only the infected agents, and 3) only the symptomatic agents. The results show that the most effective use of lockdown measures is when all infected agents, including both symptomatic and asymptomatic, are quarantined, while the uninfected agents are allowed to move freely. This result calls for regular and extensive testing of a population to isolate and restrict all infected agents.


Sign in / Sign up

Export Citation Format

Share Document