scholarly journals Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termites and the cockroach Cryptocercus

2008 ◽  
Vol 276 (1655) ◽  
pp. 239-245 ◽  
Author(s):  
Moriya Ohkuma ◽  
Satoko Noda ◽  
Yuichi Hongoh ◽  
Christine A Nalepa ◽  
Tetsushi Inoue

Cryptocercus cockroaches and lower termites harbour obligate, diverse and unique symbiotic cellulolytic flagellates in their hindgut that are considered critical in the development of social behaviour in their hosts. However, there has been controversy concerning the origin of these symbiotic flagellates. Here, molecular sequences encoding small subunit rRNA and glyceraldehyde-3-phosphate dehydrogenase were identified in the symbiotic flagellates of the order Trichonymphida (phylum Parabasalia) in the gut of Cryptocercus punctulatus and compared phylogenetically to the corresponding species in termites. In each of the monophyletic lineages that represent family-level groups in Trichonymphida, the symbionts of Cryptocercus were robustly sister to those of termites. Together with the recent evidence for the sister-group relationship of the host insects, this first comprehensive study comparing symbiont molecular phylogeny strongly suggests that a set of symbiotic flagellates representative of extant diversity was already established in an ancestor common to Cryptocercus and termites, was vertically transmitted to their offspring, and subsequently became diversified to distinct levels, depending on both the host and the symbiont lineages.

2020 ◽  
Vol 34 (1) ◽  
pp. 101 ◽  
Author(s):  
Ryutaro Goto ◽  
James Monnington ◽  
Marija Sciberras ◽  
Isao Hirabayashi ◽  
Greg W. Rouse

Echiura (commonly called spoon worms) are derived annelids that have an unsegmented sausage-shaped body with a highly extensible anterior end (i.e. a proboscis). Echiura currently contains two superfamilies: Echiurioidea (with Echiuridae, Urechidae and Thalassematidae) and Bonellioidea (with Bonelliidae, and Ikedidae). Ikedidae contains only Ikeda, which is distinctive in having a huge trunk, a highly elongate proboscis with stripes or dots, and numerous gonoducts. A recent molecular phylogeny of Echiura recovered Ikedidae as the sister group to Bonelliidae. However, due to relatively low support values for the monophyly of Bonelliidae, this relationship remains problematic. In this study, we reinvestigated the relationship of Bonelliidae and Ikedidae using an expanded dataset with more taxa and genes. In contrast to the previous results, our analyses strongly support that Ikeda is nested within Bonelliidae due to the placement of Maxmuelleria. On the basis of this result, we synonymise Ikedidae with Bonelliidae and transfer Ikeda to the latter, the diagnosis of which is amended. In addition, we synonymise Urechidae with its sister group Echiuridae because they share the synapomorphy of having anal chaetae rings. Furthermore, considering that recent phylogenetic studies have consistently recovered Echiura as the sister group to Capitelliidae within Annelida, we drop the rank of the echiuran clade to family-level and propose a revised classification: Thalassematidae with two subfamilies, Thalassematinae (with two tribes Echiurini and Thalassematini) and Bonelliinae. In addition, we identified a sample collected from the deep sea (~1820 m) of Monterey Bay, California, based on its molecular data. This terminal unexpectedly formed the sister group to the eight genera of Thalassematini, most members of which are inhabitants of littoral zones.


Zootaxa ◽  
2004 ◽  
Vol 779 (1) ◽  
pp. 1 ◽  
Author(s):  
D. TIMOTHY J. LITTLEWOOD ◽  
SARAH M. MCDONALD ◽  
ANTHONY C. GILL ◽  
THOMAS H. CRIBB

Butterflyfish are colourful, pan-tropical coastal fish that are important and distinctive members of coral reef communities. A successful systematic scheme and a robust phylogeny is considered essential in understanding further their biogeography and ecology, although recent cladistic treatments of butterflyfish phylogeny, based on soft tissue and bone morphology and coded at the generic and subgeneric levels, differ in character coding and subsequently tree topology. This study provides an independent test of the morphologically based hypotheses, using molecular systematic data from two partial mitochondrial gene fragments, cytochrome b (cytb) and small subunit rRNA (rrnS), for 52 ingroup chaetodontids and seven pomacanthids used to root the molecular trees. Individual gene trees were largely compatible and a combined molecular phylogeny, inferred from Bayesian analysis, was used to test alternative hypotheses suggested by morphological analyses. The tree was also used to map the latest morphological matrix in order to evaluate potential synapomorphies for various nodes defining butterflyfish interrelationships. A clade comprised of Chelmon and Coradion was sister group to other chaetodontids. Heniochus and Hemitaurichthys were each resolved as monophyletic groups, and as sister taxa Of the taxa sampled, Prognothodes was resolved as the sister genus to Chaeotodon. Of the ten Chaetodon subgenera sampled, all were monophyletic but their interrelationships differed significantly from that inferred from morphological characters. Lepidochaetodon was the most basal subgenus followed by Exornator and the remaining subgenera. Molecular data support the sister group relationship between Corallochaetodon and Citharoedus suggested by morphology, but major differences occur among the remaining more derived taxa. Chaetodon trifascialis and C. oligacanthus were resolved as sister taxa adding weight to the inclusion of the latter in C. Megaprotodon. Of those pairs of taxa known to hybridize and sampled with molecular data, all were closely related phylogenetically, except those hybrids known to occur in the Rabdophorus subgenus. Two base changes separated C. pelewensis from C.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 779 ◽  
Author(s):  
Ke-Ke Xu ◽  
Qing-Ping Chen ◽  
Sam Pedro Galilee Ayivi ◽  
Jia-Yin Guan ◽  
Kenneth B. Storey ◽  
...  

Insects of the order Phasmatodea are mainly distributed in the tropics and subtropics and are best known for their remarkable camouflage as plants. In this study, we sequenced three complete mitochondrial genomes from three different families: Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis. The lengths of the three mitochondrial genomes were 15,896 bp, 16,869 bp, and 17,005 bp, respectively, and the gene composition and structure of the three stick insects were identical to those of the most recent common ancestor of insects. The phylogenetic relationships among stick insects have been chaotic for a long time. In order to discuss the intra- and inter-ordinal relationship of Phasmatodea, we used the 13 protein-coding genes (PCGs) of 85 species for maximum likelihood (ML) and Bayesian inference (BI) analyses. Results showed that the internal topological structure of Phasmatodea had a few differences in both ML and BI trees and long-branch attraction (LBA) appeared between Embioptera and Zoraptera, which led to a non-monophyletic Phasmatodea. Consequently, after removal of the Embioptera and Zoraptera species, we re-performed ML and BI analyses with the remaining 81 species, which showed identical topology except for the position of Tectarchus ovobessus (Phasmatodea). We recovered the monophyly of Phasmatodea and the sister-group relationship between Phasmatodea and Mantophasmatodea. Our analyses also recovered the monophyly of Heteropterygidae and the paraphyly of Diapheromeridae, Phasmatidae, Lonchodidae, Lonchodinae, and Clitumninae. In this study, Peruphasma schultei (Pseudophasmatidae), Phraortes sp. YW-2014 (Lonchodidae), and species of Diapheromeridae clustered into the clade of Phasmatidae. Within Heteropterygidae, O. guangxiensis was the sister clade to O. mouhotii belonging to Dataminae, and the relationship of (Heteropteryginae + (Dataminae + Obriminae)) was recovered.


1992 ◽  
Vol 335 (1274) ◽  
pp. 207-219 ◽  

Sphenodon has traditionally been regarded as a little changed survivor of the Permo-Triassic thecodont or eosuchian ‘stem reptiles’ but has alternatively been placed in the Lepidosauria as the plesiomorphic or even apomorphic sister-taxon of the squamates. A cladistic analysis of 16 characters from spermatozoal ultrastructure of Sphenodon and other amniotes unequivocally confirms its exceedingly primitive status. The analysis suggests that monotremes are the sister-group of birds; squamates form the sister-group of a bird + monotreme clade while the three sister-groups successively below the bird + monotreme + squa- mate assemblage are the caiman, the tuatara and the outgroup (turtles). The monotreme + bird couplet, supports the concept of the Haemothermia, but can only be regarded heuristically. The usual concept of mammals as a synapsid-derived outgroup of all other extant amniotes is not substantiated spermatologically. All cladistic analyses made, and a separate consideration of apomorphies, indicate that Sphenodon is spermatologically the most primitive amniote, excepting the Chelonia. It is advanced (apomorphic) for the amniotes in only two of the 16 spermatozoal characters considered. A close, sister-group relationship of Sphenodon with squamates is not endorsed.


Zootaxa ◽  
2019 ◽  
Vol 4674 (3) ◽  
pp. 375-385
Author(s):  
EDUARDO DOMÍNGUEZ ◽  
MARÍA GABRIELA CUEZZO ◽  
SIMÓN CLAVIER

Four of the 43 genera of South American Leptophlebiidae are dipterous. A previous phylogenetic hypothesis supported that clade Askola+Hagenulopsis, and that Bessierus+Perissophlebiodes, are sister groups of the Farrodes complex. Adults of Bessierus and Perissophlebiodes were not known but posteriorly Perissophlebiodes male imago was described. Here, we describe the male imago of Bessierus for the first time. Both genera share, besides the absence of the hind wings, the asymmetrical fork of MA, symmetrical fork of MP, dissimilar tarsal claws, and forceps sockets fused. Along with the description of the imago, a new diagnosis for the genus Bessierus is presented, also updating the identification key with this new information. A new cladistics analysis is performed to test the stability of the proposed relationships of these four genera within Leptophlebiidae. We obtained a single cladistic hypothesis where the addition of Bessierus adult characters resulted in new synapomorphies for the (Bessierus, Perissophlebiodes) clade, and improved its clade statistical support. The fused forceps sockets resulted in a synapomorphy uniting Bessierus, Perissophlebiodes and Simothraulopsis. As a result of this new analysis, the hypothesis of independent losses of the hind wings in the two dipterous groups studied is supported. The Farrodes lineage is not supported as proposed in previous studies, being restricted only to (Farrodes (Simothraulopsis, Homothraulus)) while the identity of “Perissophlebiodes lineage” is supported. The sister group relationship of Rondophlebia is not clearly defined. 


2010 ◽  
Vol 60 (2) ◽  
pp. 460-468 ◽  
Author(s):  
Miao Miao ◽  
Yangang Wang ◽  
Weibo Song ◽  
John C. Clamp ◽  
Khaled A. S. Al-Rasheid

Recently, an undescribed marine ciliate was isolated from China. Investigation of its morphology and infraciliature revealed it as an undescribed species representing a new genus, Eurystomatella n. gen., the type of the new family Eurystomatellidae n. fam. The new family is defined by close-set, apically positioned oral membranelles and a dominant buccal field that is surrounded by an almost completely circular paroral membrane. The new genus is defined by having a small oral membranelle 1 (M1), bipartite M2 and well-developed M3, a body surface faintly sculptured with a silverline system in a quadrangular, reticulate pattern and a cytostome located at the anterior third of a large buccal field. The type species of the new genus, Eurystomatella sinica n. sp., is a morphologically unique form that is defined mainly by the combination of a conspicuously flattened body, several caudal cilia, extremely long cilia associated with the buccal apparatus and a contractile vacuole located subcaudally. According to phylogenetic analyses of small-subunit (SSU) rRNA gene sequences, Eurystomatella clusters with the genus Cyclidium, as a sister group to the family Pleuronematidae. The great divergence in both buccal and somatic ciliature between Eurystomatella and all other known scuticociliates supports the establishment of a new family for Eurystomatella.


2005 ◽  
Vol 55 (6) ◽  
pp. 2595-2604 ◽  
Author(s):  
Dag Klaveness ◽  
Kamran Shalchian-Tabrizi ◽  
Helge Abildhauge Thomsen ◽  
Wenche Eikrem ◽  
Kjetill S. Jakobsen

Telonema is a widely distributed group of phagotrophic flagellates with two known members. In this study, the structural identity and molecular phylogeny of Telonema antarcticum was investigated and a valid description is proposed. Molecular phylogeny was studied using small-subunit rRNA (SSU rRNA) gene sequences. The pear-shaped cell had two subequal flagella that emerged laterally on the truncated antapical tail. One flagellum had tripartite hairs. The cell was naked, but had subsurface vesicles containing angular paracrystalline bodies of an unknown nature. A unique complex cytoskeletal structure, the subcortical lamina, was found to be an important functional and taxonomic feature of the genus. Telonema has an antero-ventral depression where food particles are ingested and then transferred to a conspicuous anterior food vacuole. The molecular phylogeny inferred from the SSU rRNA gene sequence suggested that Telonema represents an isolated and deep branch among the tubulocristate protists.


2019 ◽  
Vol 136 ◽  
pp. 21-28 ◽  
Author(s):  
Marie K. Brandrud ◽  
Ovidiu Paun ◽  
Richard Lorenz ◽  
Juliane Baar ◽  
Mikael Hedrén

Zootaxa ◽  
2007 ◽  
Vol 1531 (1) ◽  
pp. 49-55 ◽  
Author(s):  
HONG-XIA CAI ◽  
JING CHE ◽  
JUN-FENG PANG ◽  
ER-MI ZHAO ◽  
YA-PING ZHANG

In order to evaluate the five species groups of Chinese Amolops based on morphological characteristics, and to clarify the phylogenetic position of the concave-eared torrent frog Amolops tormotus, we investigated the phylogeny of Amolops by maximum parsimony, Bayesian Inference, and maximum likelihood methods using two mitochondrial DNA fragments (12S rRNA, 16S rRNA). Our results supported a sister group relationship of Amolops ricketti and Amolops hainanensis. However, the grouping of Amolops mantzorum and Amolops monticola needs to be resolved with more data. Amolops tormotus was nested in genus Odorrana. Thus, recognition of the A. tormotus group is unwarranted and A. tormotus should be referred to genus Odorrana as O. tormota. This species is the sister group of O. nasica plus O. versabilis. The new classification implies that the genus Wurana is to be considered as junior subjective synonym of Odorrana.


Sign in / Sign up

Export Citation Format

Share Document