scholarly journals Grey matter volume in early human visual cortex predicts proneness to the sound-induced flash illusion

2012 ◽  
Vol 279 (1749) ◽  
pp. 4955-4961 ◽  
Author(s):  
Benjamin de Haas ◽  
Ryota Kanai ◽  
Lauri Jalkanen ◽  
Geraint Rees

Visual perception can be modulated by sounds. A drastic example of this is the sound-induced flash illusion: when a single flash is accompanied by two bleeps, it is sometimes perceived in an illusory fashion as two consecutive flashes. However, there are strong individual differences in proneness to this illusion. Some participants experience the illusion on almost every trial, whereas others almost never do. We investigated whether such individual differences in proneness to the sound-induced flash illusion were reflected in structural differences in brain regions whose activity is modulated by the illusion. We found that individual differences in proneness to the illusion were strongly and significantly correlated with local grey matter volume in early retinotopic visual cortex. Participants with smaller early visual cortices were more prone to the illusion. We propose that strength of auditory influences on visual perception is determined by individual differences in recurrent connections, cross-modal attention and/or optimal weighting of sensory channels.

2018 ◽  
Vol 49 (3) ◽  
pp. 412-420 ◽  
Author(s):  
Lena Palaniyappan ◽  
Olha Hodgson ◽  
Vijender Balain ◽  
Sarina Iwabuchi ◽  
Penny Gowland ◽  
...  

AbstractBackgroundIn patients with schizophrenia, distributed abnormalities are observed in grey matter volume. A recent hypothesis posits that these distributed changes are indicative of a plastic reorganisation process occurring in response to a functional defect in neuronal information transmission. We investigated the structural covariance across various brain regions in early-stage schizophrenia to determine if indeed the observed patterns of volumetric loss conform to a coordinated pattern of structural reorganisation.MethodsStructural magnetic resonance imaging scans were obtained from 40 healthy adults and 41 age, gender and parental socioeconomic status matched patients with schizophrenia. Volumes of grey matter tissue were estimated at the regional level across 90 atlas-based parcellations. Group-level structural covariance was studied using a graph theoretical framework.ResultsPatients had distributed reduction in grey matter volume, with high degree of localised covariance (clustering) compared with controls. Patients with schizophrenia had reduced centrality of anterior cingulate and insula but increased centrality of the fusiform cortex, compared with controls. Simulating targeted removal of highly central nodes resulted in significant loss of the overall covariance patterns in patients compared with controls.ConclusionRegional volumetric deficits in schizophrenia are not a result of random, mutually independent processes. Our observations support the occurrence of a spatially interconnected reorganisation with the systematic de-escalation of conventional ‘hub’ regions. This raises the question of whether the morphological architecture in schizophrenia is primed for compensatory functions, albeit with a high risk of inefficiency.


2021 ◽  
Author(s):  
Hyeokmoon Kweon ◽  
Gokhan Aydogan ◽  
Alain Dagher ◽  
Danilo Bzdok ◽  
Christian C Ruff ◽  
...  

Recent studies report that socioeconomic status (SES) correlates with brain structure. Yet, such findings are variable and little is known about underlying causes. We present a well-powered voxel-based analysis of grey matter volume (GMV) across levels of SES, finding many small SES effects widely distributed across the brain, including cortical, subcortical and cerebellar regions. We also construct a polygenic index of SES to control for the additive effects of common genetic variation related to SES, which attenuates observed SES-GMV relations, to different degrees in different areas. Remaining variance, which may be attributable to environmental factors, is substantially accounted for by body mass index, a marker for lifestyle related to SES. In sum, SES affects multiple brain regions through measurable genetic and environmental effects.


Brain ◽  
2020 ◽  
Vol 143 (2) ◽  
pp. 541-553 ◽  
Author(s):  
Matthew J Burke ◽  
Juho Joutsa ◽  
Alexander L Cohen ◽  
Louis Soussand ◽  
Danielle Cooke ◽  
...  

Abstract Inconsistent findings from migraine neuroimaging studies have limited attempts to localize migraine symptomatology. Novel brain network mapping techniques offer a new approach for linking neuroimaging findings to a common neuroanatomical substrate and localizing therapeutic targets. In this study, we attempted to determine whether neuroanatomically heterogeneous neuroimaging findings of migraine localize to a common brain network. We used meta-analytic coordinates of decreased grey matter volume in migraineurs as seed regions to generate resting state functional connectivity network maps from a normative connectome (n = 1000). Network maps were overlapped to identify common regions of connectivity across all coordinates. Specificity of our findings was evaluated using a whole-brain Bayesian spatial generalized linear mixed model and a region of interest analysis with comparison groups of chronic pain and a neurologic control (Alzheimer’s disease). We found that all migraine coordinates (11/11, 100%) were negatively connected (t ≥ ±7, P < 10−6 family-wise error corrected for multiple comparisons) to a single location in left extrastriate visual cortex overlying dorsal V3 and V3A subregions. More than 90% of coordinates (10/11) were also positively connected with bilateral insula and negatively connected with the hypothalamus. Bayesian spatial generalized linear mixed model whole-brain analysis identified left V3/V3A as the area with the most specific connectivity to migraine coordinates compared to control coordinates (voxel-wise probability of ≥90%). Post hoc region of interest analyses further supported the specificity of this finding (ANOVA P = 0.02; pairwise t-tests P = 0.03 and P = 0.003, respectively). In conclusion, using coordinate-based network mapping, we show that regions of grey matter volume loss in migraineurs localize to a common brain network defined by connectivity to visual cortex V3/V3A, a region previously implicated in mechanisms of cortical spreading depression in migraine. Our findings help unify migraine neuroimaging literature and offer a migraine-specific target for neuromodulatory treatment.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Xiaohui Yan ◽  
Ke Jiang ◽  
Hui Li ◽  
Ziyi Wang ◽  
Kyle Perkins ◽  
...  

Brain abnormalities in the reading network have been repeatedly reported in individuals with developmental dyslexia (DD); however, it is still not totally understood where the structural and functional abnormalities are consistent/inconsistent across languages. In the current multimodal meta-analysis, we found convergent structural and functional alterations in the left superior temporal gyrus across languages, suggesting a neural signature of DD. We found greater reduction in grey matter volume and brain activation in the left inferior frontal gyrus in morpho-syllabic languages (e.g. Chinese) than in alphabetic languages, and greater reduction in brain activation in the left middle temporal gyrus and fusiform gyrus in alphabetic languages than in morpho-syllabic languages. These language differences are explained as consequences of being DD while learning a specific language. In addition, we also found brain regions that showed increased grey matter volume and brain activation, presumably suggesting compensations and brain regions that showed inconsistent alterations in brain structure and function. Our study provides important insights about the etiology of DD from a cross-linguistic perspective with considerations of consistency/inconsistency between structural and functional alterations.


2021 ◽  
Author(s):  
Michal Rafal Zareba ◽  
Magdalena Fafrowicz ◽  
Tadeusz Marek ◽  
Ewa Beldzik ◽  
Halszka Oginska ◽  
...  

Abstract Humans can be classified as early, intermediate and late chronotypes based on the preferred sleep and wakefulness patterns. The anatomical basis of these distinctions remains largely unexplored. Using magnetic resonance imaging data from 113 healthy young adults (71 females), we aimed to replicate cortical thickness and grey matter volume chronotype differences reported earlier in the literature using a greater sample size, as well as to explore the volumetric white matter variation linked to contrasting circadian phenotypes. Instead of comparing the chronotypes, we correlated the individual chronotype scores with their morphometric brain measures. The results revealed one cluster in the left fusiform and entorhinal gyri showing increased cortical thickness with increasing preference for eveningness, potentially providing an anatomical substrate for chronotype-sensitive affective processing. No significant results were found for grey and white matter volume. We failed to replicate cortical thickness and volumetric grey matter distinctions in the brain regions reported in the literature. Furthermore, we found no association between white matter volume and chronotype. Thus, while this study confirms that circadian preference is associated with specific structural substrates, it adds to the growing concerns that reliable and replicable neuroimaging research requires datasets much larger than those commonly used.


2015 ◽  
Vol 9 ◽  
pp. 13-19 ◽  
Author(s):  
Koji Shimada ◽  
Shinichiro Takiguchi ◽  
Sakae Mizushima ◽  
Takashi X. Fujisawa ◽  
Daisuke N. Saito ◽  
...  

Brain ◽  
2020 ◽  
Vol 143 (4) ◽  
pp. 1106-1113 ◽  
Author(s):  
Christoph J Schankin ◽  
Farooq H Maniyar ◽  
Denise E Chou ◽  
Michael Eller ◽  
Till Sprenger ◽  
...  

Abstract Patients with visual snow syndrome suffer from a continuous pan-field visual disturbance, additional visual symptoms, tinnitus, and non-perceptional symptoms. The pathophysiology of visual symptoms might involve dysfunctional visual cortex. So far, the extra-visual system has not been investigated. We aimed at identifying structural and functional correlates for visual and non-visual symptoms in visual snow syndrome. Patients were compared to age- and sex-matched controls using 18F-2-fluoro-2-deoxy-d-glucose PET (n = 20 per group) and voxel-based morphometry (n = 17 per group). Guided by the PET results, region of interest analysis was done in voxel-based morphometry to identify structural-functional correspondence. Grey matter volume was assessed globally. Patients had corresponding hypermetabolism and cortical volume increase in the extrastriate visual cortex at the junction of the right lingual and fusiform gyrus. There was hypometabolism in the right superior temporal gyrus and the left inferior parietal lobule. Patients had grey matter volume increases in the temporal and limbic lobes and decrease in the superior temporal gyrus. The corresponding structural and functional alterations emphasize the relevance of the visual association cortex for visual snow syndrome. The broad structural and functional footprint, however, confirms the clinical impression that the disorder extends beyond the visual system.


2021 ◽  
Author(s):  
Michal Rafal Zareba ◽  
Magdalena Fafrowicz ◽  
Tadeusz Marek ◽  
Ewa Beldzik ◽  
Halszka Oginska ◽  
...  

Abstract Humans can be classified as early, intermediate and late chronotypes based on the preferred sleep and wakefulness patterns. The anatomical basis of these distinctions remains largely unexplored. Using magnetic resonance imaging data from 113 healthy young adults (71 females), we aimed to replicate cortical thickness and grey matter volume chronotype differences reported earlier in the literature using a greater sample size, as well as to explore the volumetric white matter variation linked to contrasting circadian phenotypes. Instead of comparing the chronotypes, we correlated the individual chronotype scores with their morphometric brain measures. The results revealed one cluster in the left fusiform and entorhinal gyri showing increased cortical thickness with increasing preference for eveningness, potentially providing an anatomical substrate for chronotype-sensitive affective processing. No significant results were found for grey and white matter volume. We failed to replicate cortical thickness and volumetric grey matter distinctions in the brain regions reported in the literature. Furthermore, we found no association between white matter volume and chronotype. Thus, while this study confirms that circadian preference is associated with specific structural substrates, it adds to the growing concerns that reliable and replicable neuroimaging research requires datasets much larger than those commonly used.


Sign in / Sign up

Export Citation Format

Share Document