scholarly journals Unique expression patterns of multiple key genes associated with the evolution of mammalian flight

2014 ◽  
Vol 281 (1783) ◽  
pp. 20133133 ◽  
Author(s):  
Zhe Wang ◽  
Mengyao Dai ◽  
Yao Wang ◽  
Kimberly L. Cooper ◽  
Tengteng Zhu ◽  
...  

Bats are the only mammals capable of true flight. Critical adaptations for flight include a pair of dramatically elongated hands with broad wing membranes. To study the molecular mechanisms of bat wing evolution, we perform genomewide mRNA sequencing and in situ hybridization for embryonic bat limbs. We identify seven key genes that display unique expression patterns in embryonic bat wings and feet, compared with mouse fore- and hindlimbs. The expression of all 5′HoxD genes ( Hoxd9–13 ) and Tbx3 , six known crucial transcription factors for limb and digit development, is extremely high and prolonged in the elongating wing area. The expression of Fam5c , a tumour suppressor, in bat limbs is bat-specific and significantly high in all short digit regions (the thumb and foot digits). These results suggest multiple genetic changes occurred independently during the evolution of bat wings to elongate the hand digits, promote membrane growth and keep other digits short. Our findings also indicate that the evolution of limb morphology depends on the complex integration of multiple gene regulatory networks and biological processes that control digit formation and identity, chondrogenesis, and interdigital regression or retention.

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Tarun Karthik Kumar Mamidi ◽  
Jiande Wu ◽  
Chindo Hicks

Background. A majority of prostate cancers (PCas) are indolent and cause no harm even without treatment. However, a significant proportion of patients with PCa have aggressive tumors that progress rapidly to metastatic disease and are often lethal. PCa develops through somatic mutagenesis, but emerging evidence suggests that germline genetic variation can markedly contribute to tumorigenesis. However, the causal association between genetic susceptibility and tumorigenesis has not been well characterized. The objective of this study was to map the germline and somatic mutation interaction landscape in indolent and aggressive tumors and to discover signatures of mutated genes associated with each type and distinguishing the two types of PCa. Materials and Methods. We integrated germline mutation information from genome-wide association studies (GWAS) with somatic mutation information from The Cancer Genome Atlas (TCGA) using gene expression data from TCGA on indolent and aggressive PCas as the intermediate phenotypes. Germline and somatic mutated genes associated with each type of PCa were functionally characterized using network and pathway analysis. Results. We discovered gene signatures containing germline and somatic mutations associated with each type and distinguishing the two types of PCa. We discovered multiple gene regulatory networks and signaling pathways enriched with germline and somatic mutations including axon guidance, RAR, WINT, MSP-RON, STAT3, PI3K, TR/RxR, and molecular mechanisms of cancer, NF-kB, prostate cancer, GP6, androgen, and VEGF signaling pathways for indolent PCa and MSP-RON, axon guidance, RAR, adipogenesis, and molecular mechanisms of cancer and NF-kB signaling pathways for aggressive PCa. Conclusion. The investigation revealed germline and somatic mutated genes associated with indolent and aggressive PCas and distinguishing the two types of PCa. The study revealed multiple gene regulatory networks and signaling pathways dysregulated by germline and somatic alterations. Integrative analysis combining germline and somatic mutations is a powerful approach to mapping germline and somatic mutation interaction landscape.


2020 ◽  
Author(s):  
Tong Zhao ◽  
Alma Piñeyro-Nelson ◽  
Qianxia Yu ◽  
Xiaoying Hu ◽  
Huanfang Liu ◽  
...  

Abstract Background:The flower of Hedychium coronarium possesses highly specialized floral organs: a synsepalous calyx, petaloid staminodes and a labellum. The formation of these organs is controlled by two gene categories: floral organ identity genes and organ boundary genes, which may function individually or jointly during flower development. Although the floral organogenesis of H. coronarium has been studied at the morphological level, the underlying molecular mechanisms involved in its floral development still remain poorly understood. In addition, previous works analyzing the role of MADS-box genes in controlling floral organ specification in some Zingiberaceae did not address the molecular mechanisms involved in the formation of particular organ morphologies that emerge later in flower development, such as the synsepalous calyx formed through intercalary growth of adjacent sepals. Results:Here, we used comparative transcriptomics combined with Real-time quantitative PCR and mRNA in situ hybridization to investigate gene expression patterns of ABC-class genes in H. coronarium flowers, as well as the homolog of the organ boundary gene PETAL LOSS (HcPTL). qRT-PCR detection showed that HcAP3 and HcAG were expressed in both the petaloid staminode and the fertile stamen. mRNA in situ hybridization showed that HcPTL was expressed in developing meristems, including cincinnus primordia, floral primordia, common primordia and almost all new initiating floral organ primordia.Conclusions:Our studies found that stamen/petal identity or stamen fertility in H. coronarium was not necessarily correlated with the differential expression of HcAP3 and HcAG. We also found a novel spatio-temporal expression pattern for HcPTL mRNA, suggesting it may have evolved a lineage-specific role in the morphogenesis of the Hedychium flower. Our study provides a new transcriptome reference and a functional hypothesis regarding the role of a boundary gene in organ fusion that should be further addressed through phylogenetic analyzes of this gene, as well as functional studies.


2019 ◽  
Vol 20 (10) ◽  
pp. 2391 ◽  
Author(s):  
Jiayang Xu ◽  
Qiansi Chen ◽  
Pingping Liu ◽  
Wei Jia ◽  
Zheng Chen ◽  
...  

Salinity is one of the most severe forms of abiotic stress and affects crop yields worldwide. Plants respond to salinity stress via a sophisticated mechanism at the physiological, transcriptional and metabolic levels. However, the molecular regulatory networks involved in salt and alkali tolerance have not yet been elucidated. We developed an RNA-seq technique to perform mRNA and small RNA (sRNA) sequencing of plants under salt (NaCl) and alkali (NaHCO3) stress in tobacco. Overall, 8064 differentially expressed genes (DEGs) and 33 differentially expressed microRNAs (DE miRNAs) were identified in response to salt and alkali stress. A total of 1578 overlapping DEGs, which exhibit the same expression patterns and are involved in ion channel, aquaporin (AQP) and antioxidant activities, were identified. Furthermore, genes involved in several biological processes, such as “photosynthesis” and “starch and sucrose metabolism,” were specifically enriched under NaHCO3 treatment. We also identified 15 and 22 miRNAs that were differentially expressed in response to NaCl and NaHCO3, respectively. Analysis of inverse correlations between miRNAs and target mRNAs revealed 26 mRNA-miRNA interactions under NaCl treatment and 139 mRNA-miRNA interactions under NaHCO3 treatment. This study provides new insights into the molecular mechanisms underlying the response of tobacco to salinity stress.


2017 ◽  
Author(s):  
Nikos Karaiskos ◽  
Philipp Wahle ◽  
Jonathan Alles ◽  
Anastasiya Boltengagen ◽  
Salah Ayoub ◽  
...  

ABSTRACTDrosophila is a premier model system for understanding the molecular mechanisms of development. By the onset of morphogenesis, ~6000 cells express distinct gene combinations according to embryonic position. Despite extensive mRNA in situ screens, combinatorial gene expression within individual cells is largely unknown. Therefore, it is difficult to comprehensively identify the coding and non-coding transcripts that drive patterning and to decipher the molecular basis of cellular identity. Here, we single-cell sequence precisely staged embryos, measuring >3100 genes per cell. We produce a ‘transcriptomic blueprint’ of development – a virtual embryo where 3D locations of sequenced cells are confidently identified. Our “Drosophila-Virtual-Expression-eXplorer” performs virtual in situ hybridizations and computes expression gradients. Using DVEX, we predict spatial expression and discover patterned lncRNAs. DEVX is sensitive enough to detect subtle evolutionary changes in expression patterns between Drosophila species. We believe DVEX is a prototype for powerful single cell studies in complex tissues.


2019 ◽  
Author(s):  
Pengjia Bao ◽  
Jiayu Luo ◽  
Yanbin Liu ◽  
Min Chu ◽  
Qingmiao Ren ◽  
...  

Abstract Background: Mammalian hair play an important role in mammals' ability to adapt to changing climatic environments. The seasonal circulation of yak hair helps them adapt to high altitude but the regulation mechanisms of the proliferation and differentiation of hair follicle (HF) cells during development are still unknown. Here, using time series data for whole genome expression profiles and hormone contents, we systematically analyzed the mechanism regulating the periodic expression of hair development in the yak and reviewed how different combinations of genetic pathways regulate HF development and cycling. Results: This study used high-throughput RNA sequencing to provide a detailed description of global gene expression in 15 samples from five developmental time points during the yak hair cycle. A total of 11,666 genes were found to be involved in the hair cycle. According to clustering analysis and the morphological features we observed, we found that these 15 samples could be significantly grouped into three phases, which represent different developmental periods in the hair cycle. A total of 2,316 genes were identified in these three consecutive developmental periods and their expression patterns could be divided into 9 clusters; GO annotation and KEGG pathway enrichment were performed on these differentially expressed genes (DEGs), showing that the three periods have distinctive functions in the seasonal hair cycle. The regulatory network of related signaling factors highlighted the interaction and dynamic expression of key DEGs during the seasonal hair cycle. Through co-expression analysis, we revealed a number of modular hub genes highly associated with hormones that may play unique roles in hormonal regulation of events associated with the hair cycle. Conclusions: Our results revealed the molecular mechanisms and developmental regulatory networks of the seasonal hair cycle in the yak and filled a gap in the current research field. The findings will be valuable in further understanding the alpine adaptation mechanism in the yak, which is important in order to make full use of yak hair resources and promote the economic development of pastoral plateau areas. Keywords: Hair cycle, Seasonal development, Transcriptome, Yak


2020 ◽  
Vol 96 (11) ◽  
Author(s):  
Sophie de Vries ◽  
Jan de Vries ◽  
John M Archibald ◽  
Claudio H Slamovits

ABSTRACT Oomycetes include many devastating plant pathogens. Across oomycete diversity, plant-infecting lineages are interspersed by non-pathogenic ones. Unfortunately, our understanding of the evolution of lifestyle switches is hampered by a scarcity of data on the molecular biology of saprotrophic oomycetes, ecologically important primary colonizers of dead tissue that can serve as informative reference points for understanding the evolution of pathogens. Here, we established Salisapilia sapeloensis as a tractable system for the study of saprotrophic oomycetes. We generated multiple transcriptomes from S. sapeloensis and compared them with (i) 22 oomycete genomes and (ii) the transcriptomes of eight pathogenic oomycetes grown under 13 conditions. We obtained a global perspective on gene expression signatures of oomycete lifestyles. Our data reveal that oomycete saprotrophs and pathogens use similar molecular mechanisms for colonization but exhibit distinct expression patterns. We identify a S. sapeloensis-specific array and expression of carbohydrate-active enzymes and putative regulatory differences, highlighted by distinct expression levels of transcription factors. Salisapilia sapeloensis expresses only a small repertoire of candidates for virulence-associated genes. Our analyses suggest lifestyle-specific gene regulatory signatures and that, in addition to variation in gene content, shifts in gene regulatory networks underpin the evolution of oomycete lifestyles.


2019 ◽  
Author(s):  
Sophie de Vries ◽  
Jan de Vries ◽  
John M Archibald ◽  
Claudio H Slamovits

Oomycetes include many well-studied, devastating plant pathogens. Across oomycete diversity, plant-infecting lineages are interspersed by non-pathogenic ones. Unfortunately, our understanding of the evolution of lifestyle switches is hampered by a scarcity of data on the molecular biology of saprotrophic oomycetes, ecologically important primary colonizers of dead tissue that can serve as informative reference points for understanding the evolution of pathogens. Here, we established Salisapilia sapeloensis growing on axenic litter as a tractable system for the study of saprotrophic oomycetes. We generated multiple transcriptomes from S. sapeloensis and compared them to (a) 22 oomycete genomes and (b) the transcriptomes of eight pathogenic oomycetes grown under 13 conditions (three pathogenic lifestyles, six hosts/substrates, and four tissues). From these analyses we obtained a global perspective on the gene expression signatures of oomycete lifestyles. Our data reveal that oomycete saprotrophs and pathogens use generally similar molecular mechanisms for colonization, but exhibit distinct expression patterns. We identify S. sapeloensis' specific array and expression of carbohydrate-active enzymes and regulatory differences in pathogenicity-associated factors, including the virulence factor EpiC2B. Further, S. sapeloensis was found to express only a small repertoire of effector genes. In conclusion, our analyses reveal lifestyle-specific gene regulatory signatures and suggest that, in addition to variation in gene content, shifts in gene regulatory networks might underpin the evolution of oomycete lifestyles.


Reproduction ◽  
2014 ◽  
Vol 148 (6) ◽  
pp. 607-621 ◽  
Author(s):  
Wei Lei ◽  
Jennifer Herington ◽  
Cristi L Galindo ◽  
Tianbing Ding ◽  
Naoko Brown ◽  
...  

The mouse model has greatly contributed to understanding molecular mechanisms involved in the regulation of progesterone (P4) plus estrogen (E)-dependent blastocyst implantation process. However, little is known about contributory molecular mechanisms of the P4-only-dependent blastocyst implantation process that occurs in species such as hamsters, guineapigs, rabbits, pigs, rhesus monkeys, and perhaps humans. We used the hamster as a model of P4-only-dependent blastocyst implantation and carried out cross-species microarray (CSM) analyses to reveal differentially expressed genes at the blastocyst implantation site (BIS), in order to advance the understanding of molecular mechanisms of implantation. Upregulation of 112 genes and downregulation of 77 genes at the BIS were identified using a mouse microarray platform, while use of the human microarray revealed 62 up- and 38 down-regulated genes at the BIS. Excitingly, a sizable number of genes (30 up- and 11 down-regulated genes) were identified as a shared pool by both CSMs. Real-time RT-PCR and in situ hybridization validated the expression patterns of several up- and down-regulated genes identified by both CSMs at the hamster and mouse BIS to demonstrate the merit of CSM findings across species, in addition to revealing genes specific to hamsters. Functional annotation analysis found that genes involved in the spliceosome, proteasome, and ubiquination pathways are enriched at the hamster BIS, while genes associated with tight junction, SAPK/JNK signaling, and PPARα/RXRα signalings are repressed at the BIS. Overall, this study provides a pool of genes and evidence of their participation in up- and down-regulated cellular functions/pathways at the hamster BIS.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Li Xue ◽  
Jian Wang ◽  
Jun Zhao ◽  
Yang Zheng ◽  
Hai-Feng Wang ◽  
...  

Abstract Background Pink-flowered strawberry is a promising new ornamental flower derived from intergeneric hybridization (Fragaria × Potentilla) with bright color, a prolonged flowering period and edible fruits. Its flower color ranges from light pink to red. Pigment compounds accumulated in its fruits were the same as in cultivated strawberry fruits, but different from that in its flowers. However, the transcriptional events underlying the anthocyanin biosynthetic pathway have not been fully characterized in petal coloration. To gain insights into the regulatory networks related to anthocyanin biosynthesis and identify the key genes, we performed an integrated analysis of the transcriptome and metabolome in petals of pink-flowered strawberry. Results The main pigments of red and dark pink petals were anthocyanins, among which cyanidins were the main compound. There were no anthocyanins detected in the white-flowered hybrids. A total of 50,285 non-redundant unigenes were obtained from the transcriptome databases involved in red petals of pink-flowered strawberry cultivar Sijihong at three development stages. Amongst the unigenes found to show significant differential expression, 57 were associated with anthocyanin or other flavonoid biosynthesis, in which they were regulated by 241 differentially expressed members of transcription factor families, such as 40 MYBs, 47 bHLHs, and 41 NACs. Based on a comprehensive analysis relating pigment compounds to gene expression profiles, the mechanism of flower coloration was examined in pink-flowered strawberry. A new hypothesis was proposed to explain the lack of color phenotype of the white-flowered strawberry hybrids based on the transcriptome analysis. The expression patterns of FpDFR and FpANS genes corresponded to the accumulation patterns of cyanidin contents in pink-flowered strawberry hybrids with different shades of pink. Moreover, FpANS, FpBZ1 and FpUGT75C1 genes were the major factors that led to the absence of anthocyanins in the white petals of pink-flowered strawberry hybrids. Meanwhile, the competitive effect of FpFLS and FpDFR genes might further inhibit anthocyanin synthesis. Conclusions The data presented herein are important for understanding the molecular mechanisms underlying the petal pigmentation and will be powerful for integrating novel potential target genes to breed valuable pink-flowered strawberry cultivars.


2020 ◽  
Author(s):  
Xiaoting Wu ◽  
Zechao Zhang ◽  
Mintao Sun ◽  
Xiuhong An ◽  
Shugang Zhao ◽  
...  

Abstract Background Lignin is the main component of walnut endocarp, although we know little about the molecular mechanism of lignin formation in walnut endocarp. To understand the molecular mechanisms behind the two kinds of walnut phenotype and explore the genes involved into lignin formation, transcriptome sequencing was conducted in the walnut endocarp of the ‘Zanmei’ (ZM) and ‘Liaoning 7’ (L7) cultivars, which have different endocarp thicknesses. Compared with L7 walnut endocarp, the endocarp of ZM walnut is thicker, which decreases dehiscent nuts and compromised kernels.Results There are more differentially expressed genes (DEGs) in the ZM walnut cultivar. The DEGs involved in the phenylpropanoid biosynthesis were significantly upregulated in both cultivars 45 days after full bloom (DAFB), but more genes were upregulated in ZM than in L7. Moreover, the same DEGs showed different expression levels in the two cultivars. Most of the key genes in ZM had more different multiples than those in L7. Interestingly, when qRT-PCR was used to determine the expression of the key genes in different development stages of the two varieties, the expression patterns were different from those known in other species. Furthermore, transcription factors regulating secondary cell wall and lignin biosynthesis were identified. Quantitative real-time PCR results were consistent with transcriptome data.Conclusion In this study, transcriptome analysis was used to understand the molecular mechanisms of lignin formation in two walnut cultivars with different shell thickness. Several important key genes in the phenylpropanoid biosynthesis pathway were significantly different in the two cultivars, which may be the reason for the phenotypic differences. The analysis of transcription factors revealed that the regulation network in endocarp of walnut may be different from that of drupe such as apricot or peach. This study provides important candidate genes for exploring the complicated metabolic processes involved in the formation of walnut lignin.


Sign in / Sign up

Export Citation Format

Share Document