Comparative transcriptome profiling provides insights into endocarp lignification of walnut (Juglans Regia L.)

2020 ◽  
Author(s):  
Xiaoting Wu ◽  
Zechao Zhang ◽  
Mintao Sun ◽  
Xiuhong An ◽  
Shugang Zhao ◽  
...  

Abstract Background Lignin is the main component of walnut endocarp, although we know little about the molecular mechanism of lignin formation in walnut endocarp. To understand the molecular mechanisms behind the two kinds of walnut phenotype and explore the genes involved into lignin formation, transcriptome sequencing was conducted in the walnut endocarp of the ‘Zanmei’ (ZM) and ‘Liaoning 7’ (L7) cultivars, which have different endocarp thicknesses. Compared with L7 walnut endocarp, the endocarp of ZM walnut is thicker, which decreases dehiscent nuts and compromised kernels.Results There are more differentially expressed genes (DEGs) in the ZM walnut cultivar. The DEGs involved in the phenylpropanoid biosynthesis were significantly upregulated in both cultivars 45 days after full bloom (DAFB), but more genes were upregulated in ZM than in L7. Moreover, the same DEGs showed different expression levels in the two cultivars. Most of the key genes in ZM had more different multiples than those in L7. Interestingly, when qRT-PCR was used to determine the expression of the key genes in different development stages of the two varieties, the expression patterns were different from those known in other species. Furthermore, transcription factors regulating secondary cell wall and lignin biosynthesis were identified. Quantitative real-time PCR results were consistent with transcriptome data.Conclusion In this study, transcriptome analysis was used to understand the molecular mechanisms of lignin formation in two walnut cultivars with different shell thickness. Several important key genes in the phenylpropanoid biosynthesis pathway were significantly different in the two cultivars, which may be the reason for the phenotypic differences. The analysis of transcription factors revealed that the regulation network in endocarp of walnut may be different from that of drupe such as apricot or peach. This study provides important candidate genes for exploring the complicated metabolic processes involved in the formation of walnut lignin.

2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Zhao ◽  
Yonghui Liu ◽  
Lin Li ◽  
Haijun Meng ◽  
Ying Yang ◽  
...  

Basic helix-loop-helix (bHLH) proteins are transcription factors (TFs) that have been shown to regulate anthocyanin biosynthesis in many plant species. However, the bHLH gene family in walnut (Juglans regia L.) has not yet been reported. In this study, 102 bHLH genes were identified in the walnut genome and were classified into 15 subfamilies according to sequence similarity and phylogenetic relationships. The gene structure, conserved domains, and chromosome location of the genes were analyzed by bioinformatic methods. Gene duplication analyses revealed that 42 JrbHLHs were involved in the expansion of the walnut bHLH gene family. We also characterized cis-regulatory elements of these genes and performed Gene Ontology enrichment analysis of gene functions, and examined protein-protein interactions. Four candidate genes (JrEGL1a, JrEGL1b, JrbHLHA1, and JrbHLHA2) were found to have high homology to genes encoding bHLH TFs involved in anthocyanin biosynthesis in other plants. RNA sequencing revealed tissue- and developmental stage-specific expression profiles and distinct expression patterns of JrbHLHs according to phenotype (red vs. green leaves) and developmental stage in red walnut hybrid progeny, which were confirmed by quantitative real-time PCR analysis. All four of the candidate JrbHLH proteins localized to the nucleus, consistent with a TF function. These results provide a basis for the functional characterization of bHLH genes and investigations on the molecular mechanisms of anthocyanin biosynthesis in red walnut.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Liangbin Zeng ◽  
Airong Shen ◽  
Jia Chen ◽  
Zhun Yan ◽  
Touming Liu ◽  
...  

The ramie mothCocytodes coeruleaGuenée (RM) is an economically important pest that seriously impairs the yield of ramie, an important natural fiber crop. The molecular mechanisms that underlie the ramie-pest interactions are unclear up to date. Therefore, a transcriptome profiling analysis would aid in understanding the ramie defense mechanisms against RM. In this study, we first constructed two cDNA libraries derived from RM-challenged (CH) and unchallenged (CK) ramie leaves. The subsequent sequencing of the CH and CK libraries yielded 40.2 and 62.8 million reads, respectively. Furthermore,de novoassembling of these reads generated 26,759 and 29,988 unigenes, respectively. An integrated assembly of data from these two libraries resulted in 46,533 unigenes, with an average length of 845 bp per unigene. Among these genes, 24,327 (52.28%) were functionally annotated by predicted protein function. A comparative analysis of the CK and CH transcriptome profiles revealed 1,980 differentially expressed genes (DEGs), of which 750 were upregulated and 1,230 were downregulated. A quantitative real-time PCR (qRT-PCR) analysis of 13 random selected genes confirmed the gene expression patterns that were determined by Illumina sequencing. Among the DEGs, the expression patterns of transcription factors, protease inhibitors, and antioxidant enzymes were studied. Overall, these results provide useful insights into the defense mechanism of ramie against RM.


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Yao Zhang ◽  
Qiao-Lu Zang ◽  
Li-Wang Qi ◽  
Su-Ying Han ◽  
Wan-Feng Li

Grafting, cutting, and pruning are important horticultural techniques widely used in the establishment of clonal forestry. After the application of these techniques, some properties of the plants change, however, the underlying molecular mechanisms are still unclear. In our previous study, 27 age-related transcripts were found to be expressed differentially between the juvenile vegetative (1- and 2-year-old) and adult reproductive (25- and 50-year-old) phases of Larix kaempferi. Here, we re-analyzed the 27 age-related transcripts, cloned their full-length cDNA sequences, and measured their responses to grafting, cutting, and pruning. After sequence analysis and cloning, 20 transcription factors were obtained and annotated, most of which were associated with reproductive development, and six (LaAGL2-1, LaAGL2-2, LaAGL2-3, LaSOC1-1, LaAGL11, and LaAP2-2) showed regular expression patterns with L. kaempferi aging. Based on the expression patterns of these transcription factors in L. kaempferi trees subjected to grafting, cutting, and pruning, we concluded that (1) cutting and pruning rejuvenate the plants and change their expression, and the effects of cutting on gene expression are detectable within 14 years, although the cutting seedlings are still maturing during these years; (2) within three months after grafting, the rootstock is more sensitive to grafting than the scion and readily becomes mature with the effect of the scion, while the scion is not readily rejuvenated by the effect of the rootstock; and (3) LaAGL2-2 and LaAGL2-3 are more sensitive to grafting, while LaAP2-2 is impervious to it. These findings not only provide potential molecular markers to assess the state of plants but also aid in studies of the molecular mechanisms of rejuvenation.


Blood ◽  
2009 ◽  
Vol 114 (11) ◽  
pp. 2299-2306 ◽  
Author(s):  
Orapan Sripichai ◽  
Christine M. Kiefer ◽  
Natarajan V. Bhanu ◽  
Toshihiko Tanno ◽  
Seung-Jae Noh ◽  
...  

Abstract Therapeutic regulation of globin genes is a primary goal of translational research aimed toward hemoglobinopathies. Signal transduction was used to identify chromatin modifications and transcription factor expression patterns that are associated with globin gene regulation. Histone modification and transcriptome profiling were performed using adult primary CD34+ cells cultured with cytokine combinations that produced low versus high levels of gamma-globin mRNA and fetal hemoglobin (HbF). Embryonic, fetal, and adult globin transcript and protein expression patterns were determined for comparison. Chromatin immunoprecipitation assays revealed RNA polymerase II occupancy and histone tail modifications consistent with transcriptional activation only in the high-HbF culture condition. Transcriptome profiling studies demonstrated reproducible changes in expression of nuclear transcription factors associated with high HbF. Among the 13 genes that demonstrated differential transcript levels, 8 demonstrated nuclear protein expression levels that were significantly changed by cytokine signal transduction. Five of the 8 genes are recognized regulators of erythropoiesis or globin genes (MAFF, ID2, HHEX, SOX6, and EGR1). Thus, cytokine-mediated signal transduction in adult erythroid cells causes significant changes in the pattern of globin gene and protein expression that are associated with distinct histone modifications as well as nuclear reprogramming of erythroid transcription factors.


2014 ◽  
Vol 281 (1783) ◽  
pp. 20133133 ◽  
Author(s):  
Zhe Wang ◽  
Mengyao Dai ◽  
Yao Wang ◽  
Kimberly L. Cooper ◽  
Tengteng Zhu ◽  
...  

Bats are the only mammals capable of true flight. Critical adaptations for flight include a pair of dramatically elongated hands with broad wing membranes. To study the molecular mechanisms of bat wing evolution, we perform genomewide mRNA sequencing and in situ hybridization for embryonic bat limbs. We identify seven key genes that display unique expression patterns in embryonic bat wings and feet, compared with mouse fore- and hindlimbs. The expression of all 5′HoxD genes ( Hoxd9–13 ) and Tbx3 , six known crucial transcription factors for limb and digit development, is extremely high and prolonged in the elongating wing area. The expression of Fam5c , a tumour suppressor, in bat limbs is bat-specific and significantly high in all short digit regions (the thumb and foot digits). These results suggest multiple genetic changes occurred independently during the evolution of bat wings to elongate the hand digits, promote membrane growth and keep other digits short. Our findings also indicate that the evolution of limb morphology depends on the complex integration of multiple gene regulatory networks and biological processes that control digit formation and identity, chondrogenesis, and interdigital regression or retention.


2020 ◽  
Author(s):  
Shan Feng ◽  
Hongcheng Fang ◽  
Xia Liu ◽  
Yuhui Dong ◽  
Qingpeng Wang ◽  
...  

Abstract Background: Walnut anthracnose caused by Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. is an important walnut production problem in China. Although the long non-coding RNAs (lncRNAs) are important for plant disease resistance , the molecular mechanisms underlying resistance to C. gloeosporioides in walnut remain poorly understood.Results: The anthracnose-resistant F26 fruits from the B26 clone and the anthracnose-susceptible F423 fruits from the 4-23 clone of walnut were used as the test materials. Specifically, we performed a comparative transcriptome analysis of F26 and F423 fruit bracts to identify differentially expressed LncRNAs (DELs) at five time-points (tissues at 0 hpi, pathological tissues at 24 hpi, 48 hpi, 72 hpi, and distal uninoculated tissues at 120 hpi). Compared with F423, a total of 14525 DELs were identified, including 10645 upregulated lncRNAs and 3846 downregulated lncRNAs in F26. The number of upregulated lncRNAs in F26 compared to in F423 was significantly higher at the early stages of C. gloeosporioides infection. A total of 5 modules related to disease resistance were screened by WGCNA and the target genes of lncRNAs were obtained. Bioinformatic analysis showed that the target genes of upregulated lncRNAs were enriched in immune-related processes during the infection of C. gloeosporioides, such as activation of innate immune response, defense response to bacterium, incompatible interaction and immune system process, and enriched in plant hormone signal transduction, phenylpropanoid biosynthesis and other pathways. And 124 known target genes for 96 hub lncRNAs were predicted, including 10 known resistance genes. The expression of 5 lncRNAs and 5 target genes was confirmed by qPCR, which was consistent with the RNA-seq data.Conclusions: The results of this study provide the basis for future functional characterizations of lncRNAs regarding the C. gloeosporioides resistance of walnut fruit bracts.


2019 ◽  
Author(s):  
Xiaochun Liu ◽  
Xi Wu ◽  
Yang Yang ◽  
Chaoyue Zhong ◽  
Yin Guo ◽  
...  

Abstract Background: Spermatogenesis is an intricate process regulated by a finely organized network. The orange-spotted grouper (Epinephelus coioides) is a protogynous hermaphroditic fish, but the process of its spermatogenesis is not well-understood. In the present study, transcriptome sequencing of the male germ cells from orange-spotted grouper was performed to explore the molecular mechanisms underlying spermatogenesis. Results: In this study, the orange-spotted grouper was induced to change sex from female to male by 17alpha-methyltestosterone implantation. During the artificial spermatogenesis, different cell types from cysts containing spermatogonia, spermatocytes, spermatids, and spermatozoa were isolated by laser capture microdissection. Subsequently, transcriptomic analysis for the isolated cells were performed. A series of genes was used to verify and investigate the expression patterns in spermatogenesis. Furthermore, we also analyzed the expression of the same set of genes involved with steroid metabolism and sex throughout spermatogenesis (early-mid, late, and maturing stages) in the orange-spotted grouper. Several generally female-related genes took significantly changes in sex reversal hinted that the female-related genes in previously recognized may also play vital roles in spermatogenesis and sex reversal. In the transcriptomic data, we focused on zbtb family genes, which may be related to the process of spermatogenesis. Their expression patterns and cellular localization were examined, and the location of Eczbtb40 in different gonadal stages was investigated. We found that Eczbtb40 was expressed throughout spermatogenesis. These preliminary findings suggest that Eczbtb40 is highly conserved during vertebrate evolution and plays roles in spermatogenesis. Besides, the expression of Eczbtb40 and Eccyp17a1a overlapped in male germ cells, especially spermatogonium and spermatocyte, which suggested that Eczbtb40 might interact with Eccyp17a1a participant in spermatogenesis and sex reversal. Conclusions: The present study first depicted RNA sequencing of the male germ cells from orange-spotted grouper, and identified many important functional genes and pathways involved in spermatogenesis. The Eczbtb40 gene was subjected to molecular characterization and expression pattern analysis. These results will contribute to future studies of the molecular mechanism of spermatogenesis and sex reversal.


2021 ◽  
Author(s):  
Fuyun Hou ◽  
Zhen Qin ◽  
Taifeng Du ◽  
Yuanyuan Zhou ◽  
Aixian Li ◽  
...  

Abstract BackgroundSweetpotato(Ipomoea batatas (L.) Lam.) is one of the most important crops with high storage roots yield. Lignin affects the storage root formation. However, the molecular mechanisms of lignin biosynthesis in storage roots development have been lacking.ResultsTo reveal the molecular mechanism of lignin biosynthesis and identify new homologous genes in lignin biosynthesis during storage root development, the storage root (SR) at three different stages (D1, D2 and D3) in the two cultivars (Jishu25 and Jishu29) was investigated with full-length and second-generation transcriptome. A total of 52,137 transcripts and 21,148 unigenes were obtained after corrected with Hiseq2500 sequencing. Through the comparative analysis, 9577 unigenes were found to be differently expressed in the different stage in two cultivars. Among of them, 91 unigenes enriched in the phenylpropanoid biosynthesis, and 201 unigenes in hormone signal transduction pathway with KEGG analysis. Weighted gene co-expression network analysis of differentially expressed unigenes showed that lignin biosynthesis genes might be co-expressed with transcription factors such as AP2/ERF and MYB at the transcription level, and regulated by phytohormones auxin and GA3.ConclusionsTaken together, our findings will throw light on molecular regulatory mechanism of lignin biosynthesis involved in storage root development.


2019 ◽  
Vol 20 (18) ◽  
pp. 4462 ◽  
Author(s):  
Gaopeng Yuan ◽  
Shuxun Bian ◽  
Xiaolei Han ◽  
Shanshan He ◽  
Kai Liu ◽  
...  

Apple skin russeting naturally occurs in many varieties, particularly in “Golden Delicious” and its pedigree, and is regarded as a non-invasive physiological disorder partly caused by excessive deposition of lignin. However, the understanding of its molecular mechanism is still limited. In this study, we used iTRAQ (isobaric tags for relative and absolute quantitation) and RNA-seq to detect the changes in the expression levels of genes and proteins in three developmental stages of russeting formation, in russeted (non-bagging) and non-russeted (bagging) skin of “Golden Delicious” apple. 2856 differentially expressed genes and 942 differentially expressed proteins in the comparison groups were detected at the transcript level and protein level, respectively. A correlation analysis of the transcriptomics and proteomics data revealed that four genes (MD03G1059200, MD08G1009200, MD17G1092400, and MD17G1225100) involved in lignin biosynthesis are significant changed during apple russeting formation. Additionally, 92 transcription factors, including 4 LIM transcription factors, may be involved in apple russeting formation. Among them, one LIM transcription factor (MD15G1068200) was capable of binding to the PAL-box like (CCACTTGAGTAC) element, which indicated it was potentially involved in lignin biosynthesis. This study will provide further views on the molecular mechanisms controlling apple russeting formation.


2020 ◽  
Vol 71 (20) ◽  
pp. 6282-6296
Author(s):  
Virginia Natali Miguel ◽  
Karina Fabiana Ribichich ◽  
Jorge Ignacio Giacomelli ◽  
Raquel Lia Chan

Abstract The sunflower (Helianthus annuus) homeodomain-leucine zipper I transcription factor HaHB11 conferred differential phenotypic features when it was expressed in Arabidopsis, alfalfa, and maize plants. Such differences were increased biomass, seed yield, and tolerance to flooding. To elucidate the molecular mechanisms leading to such traits and identify HaHB11-interacting proteins, a yeast two-hybrid screening of an Arabidopsis cDNA library was carried out using HaHB11 as bait. The sole protein identified with high confidence as interacting with HaHB11 was Kinesin 13B. The interaction was confirmed by bimolecular fluorescence complementation and by yeast two-hybrid assay. Kinesin 13B also interacted with AtHB7, the Arabidopsis closest ortholog of HaHB11. Histochemical analyses revealed an overlap between the expression patterns of the three genes in hypocotyls, apical meristems, young leaves, vascular tissue, axillary buds, cauline leaves, and cauline leaf nodes at different developmental stages. AtKinesin 13B mutants did not exhibit a differential phenotype when compared with controls; however, both HaHB11 and AtHB7 overexpressor plants lost, partially or totally, their differential phenotypic characteristics when crossed with such mutants. Altogether, the results indicated that Kinesin 13B is essential for the homeodomain-leucine zipper transcription factors I to exert their functions, probably via regulation of the intracellular distribution of these transcription factors by the motor protein.


Sign in / Sign up

Export Citation Format

Share Document