scholarly journals Seasonal body size reductions with warming covary with major body size gradients in arthropod species

2017 ◽  
Vol 284 (1851) ◽  
pp. 20170238 ◽  
Author(s):  
Curtis R. Horne ◽  
Andrew G. Hirst ◽  
David Atkinson

Major biological and biogeographical rules link body size variation with latitude or environmental temperature, and these rules are often studied in isolation. Within multivoltine species, seasonal temperature variation can cause substantial changes in adult body size, as subsequent generations experience different developmental conditions. Yet, unlike other size patterns, these common seasonal temperature–size gradients have never been collectively analysed. We undertake the largest analysis to date of seasonal temperature-size gradients in multivoltine arthropods, including 102 aquatic and terrestrial species from 71 global locations. Adult size declines in warmer seasons in 86% of the species examined. Aquatic species show approximately 2.5-fold greater reduction in size per °C of warming than terrestrial species, supporting the hypothesis that greater oxygen limitation in water than in air forces aquatic species to exhibit greater plasticity in body size with temperature. Total percentage change in size over the annual cycle appears relatively constant with annual temperature range but varies between environments, such that the overall size reduction in aquatic-developing species (approx. 31%) is almost threefold greater than in terrestrial species (approx. 11%). For the first time, we show that strong correlations exist between seasonal temperature–size gradients, laboratory responses and latitudinal–size clines, suggesting that these patterns share common drivers.

2005 ◽  
Vol 83 (4) ◽  
pp. 553-568 ◽  
Author(s):  
Brendan G McKie ◽  
Peter S Cranston

Separated populations of wide-ranging ectothermic species may be subjected to differing ambient environmental regimes, with consequences for adult size and related allometric characteristics. We investigated effects of environmentally induced size variation in freshwater Australian Chironomidae (Diptera) on several morphometric ratios used to account for such variation in taxonomic classification. Echinocladius martini Cranston, 2000 (Orthocladiinae) and Australopelopia prionoptera Cranston, 2000 (Tanypodinae) larvae were sampled from tropical and temperate populations separated by approximately 1800 km, and reared to adult at temperatures representing the continent-wide range encountered by these species. Additionally, adults were sampled regularly from a field population to assess seasonal variation. Body size was related inversely to rearing temperature for both species. Nonlinear (allometric) relationships were observed consistently between body size and ratios pertaining to the antennae (AR, the ratio of the terminal to subapical flagellomeres) and legs (BV, the ratio of proximal segments to distal tarsomeres), demonstrating that these ratios inadequately factor out within-species, size-related divergence. Responses of other ratios varied erratically with sex, species, and population. We advocate cautious use of these ratios in taxonomy and phylogenetic reconstruction. We discuss possible adaptive significance of allometry in the male antennae related to the "tuning" of sound-sensitive structures to the expected terrestrial environment encountered at emergence.


BMC Zoology ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Felipe Durán ◽  
Marco A. Méndez ◽  
Claudio Correa

Abstract Background The causes of geographic variation of body size in ectotherms have generally been attributed to environmental variables. Research in amphibians has favored mechanisms that involve water availability as an explanation for the geographic variation of body size. However, there are few studies at intraspecific level on amphibians that inhabit desert or semi-desert environments, where hydric restrictions are stronger. Here, we describe and inquire as to the causes of the geographic variation of body size in the semi-desert toad Rhinella atacamensis, a terrestrial anuran that is distributed over 750 km along a latitudinal aridity gradient from the southern extreme of the Atacama Desert to the Mediterranean region of central Chile. We measured the snout-vent length of 315 adults from 11 representative localities of the entire distribution of the species. Then, using an information-theoretic approach, we evaluate whether the data support eight ecogeographic hypotheses proposed in literature. Results Rhinella atacamensis exhibits a gradual pattern of decrease in adult body size towards the north of its distribution, where the climate is more arid, which conforms to a Bergmann’s cline. The best model showed that the data support the mean annual precipitation as predictor of body size, favoring the converse water availability hypothesis. Conclusions Most studies in amphibians show that adult size increases in arid environments, but we found a converse pattern to expected according to the hydric constraints imposed by this type of environment. The evidence in R. atacamensis favors the converse water availability hypothesis, whose mechanism proposes that the foraging activity determined by the precipitation gradient has produced the clinal pattern of body size variation. The variation of this trait could also be affected by the decreasing productivity that exists towards the north of the species distribution. In addition, we found evidence that both pattern and mechanism are independent of sex. Lastly, we suggest that behavioral traits, such as nocturnal habits, might also play an important role determining this differential response to aridity. Therefore, the support for the converse water availability hypothesis found in this study shows that amphibians can respond in different ways to water restrictions imposed by arid environments.


2015 ◽  
Vol 61 (4) ◽  
pp. 569-577 ◽  
Author(s):  
Jacopo P. Mortola

Abstract Aquatic and semi-aquatic mammals, while resting at the water surface or ashore, breathe with a low frequency (f) by comparison to terrestrial mammals of the same body size, the difference increasing the larger the species. Among various interpretations, it was suggested that the low-f breathing is a consequence of the end-inspiratory breath-holding pattern adopted by aquatic mammals to favour buoyancy at the water surface, and evolved to be part of the genetic makeup. If this interpretation was correct it could be expected that, differently from f, the heart rate (HR, beats/min) of aquatic and semi-aquatic mammals at rest would not need to differ from that of terrestrial mammals and that their HR-f ratio would be higher than in terrestrial species. Literature data for HR (beats/min) in mammals at rest were gathered for 56 terrestrial and 27 aquatic species. In aquatic mammals the allometric curve (HR=191·M-0.18; M= body mass, kg) did not differ from that of terrestrial species (HR=212·M-0.22) and their HR-f ratio (on average 32±5) was much higher than in terrestrial species (5±1) (P<0.0001). The comparison of these HR allometric curves to those for f previously published indicated that the HR-f ratio was body size-independent in terrestrial species while it increased significantly with M in aquatic species. The similarity in HR and differences in f between aquatic and terrestrial mammals agree with the possibility that the low f of aquatic and semi-aquatic mammals may have evolved for a non-respiratory function, namely the regulation of buoyancy at the water surface.


Author(s):  
Ricardo Wilches ◽  
William H Beluch ◽  
Ellen McConnell ◽  
Diethard Tautz ◽  
Yingguang Frank Chan

Abstract Most phenotypic traits in nature involve the collective action of many genes. Traits that evolve repeatedly are particularly useful for understanding how selection may act on changing trait values. In mice, large body size has evolved repeatedly on islands and under artificial selection in the laboratory. Identifying the loci and genes involved in this process may shed light on the evolution of complex, polygenic traits. Here, we have mapped the genetic basis of body size variation by making a genetic cross between mice from the Faroe Islands, which are among the largest and most distinctive natural populations of mice in the world, and a laboratory mouse strain selected for small body size, SM/J. Using this F2 intercross of 841 animals, we have identified 111 loci controlling various aspects of body size, weight and growth hormone levels. By comparing against other studies, including the use of a joint meta-analysis, we found that the loci involved in the evolution of large size in the Faroese mice were largely independent from those of a different island population or other laboratory strains. We hypothesize that colonization bottleneck, historical hybridization, or the redundancy between multiple loci have resulted in the Faroese mice achieving an outwardly similar phenotype through a distinct evolutionary path.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Maggie M. Hantak ◽  
Bryan S. McLean ◽  
Daijiang Li ◽  
Robert P. Guralnick

AbstractAnthropogenically-driven climate warming is a hypothesized driver of animal body size reductions. Less understood are effects of other human-caused disturbances on body size, such as urbanization. We compiled 140,499 body size records of over 100 North American mammals to test how climate and human population density, a proxy for urbanization, and their interactions with species traits, impact body size. We tested three hypotheses of body size variation across urbanization gradients: urban heat island effects, habitat fragmentation, and resource availability. Our results demonstrate that both urbanization and temperature influence mammalian body size variation, most often leading to larger individuals, thus supporting the resource availability hypothesis. In addition, life history and other ecological factors play a critical role in mediating the effects of climate and urbanization on body size. Larger mammals and species that utilize thermal buffering are more sensitive to warmer temperatures, while flexibility in activity time appears to be advantageous in urbanized areas. This work highlights the value of using digitized, natural history data to track how human disturbance drives morphological variation.


2014 ◽  
Vol 60 (6) ◽  
pp. 700-711 ◽  
Author(s):  
Nina A. Vasilieva ◽  
Ekaterina V. Pavlova ◽  
Sergey V. Naidenko ◽  
Andrey V. Tchabovsky

Abstract Life-history theory predicts that in hibernators age of maturation is related positively to body size and negatively to the duration of active season aboveground. Yellow souslik is a large-sized ground squirrel with long hibernation, which suggests late maturation. We used four-year field observations of marked individuals to determine the age of maturation in males through analysis of age-dependent variation in body size, mass, androgen status, timing of spring emergence, ranging patterns and social behavior during the mating season. Yearling males were smaller, lighter, had lower level of fecal testosterone, emerged later and had smaller home ranges than older males. Social activity and the number of females encountered did not differ between age classes. After the second hibernation none of the studied parameters varied with age. Cluster analysis revealed two behavioral tactics: “active” males (adults only) emerged earlier, ranged more widely, initiated more contacts, encountered more females and were heavier than “passive” males (both yearling and adult). Thus, males of S. fulvus reached adult size and matured after two hibernations, which is relatively fast for such a big species with short active period. Indirect evidence for copulations and high variation among yearlings in all parameters suggest that some of them might successfully compete with adults. Active tactic of wandering and searching for females is energetically costly, and probably only adult males in good physical condition can afford it, whereas passive tactic of residing is energy saving and good for adults in poor condition and for yearlings that are continuing to grow.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Adam Hartstone-Rose ◽  
Jonathan M. G. Perry

In a recent study, we quantified the scaling of ingested food size (Vb )—the maximum size at which an animal consistently ingests food whole—and found that Vb scaled isometrically between species of captive strepsirrhines. The current study examines the relationship between Vb and body size within species with a focus on the frugivorous Varecia rubra and the folivorous Propithecus coquereli. We found no overlap in Vb between the species (all V. rubra ingested larger pieces of food relative to those eaten by P. coquereli), and least-squares regression of Vb and three different measures of body mass showed no scaling relationship within each species. We believe that this lack of relationship results from the relatively narrow intraspecific body size variation and seemingly patternless individual variation in Vb within species and take this study as further evidence that general scaling questions are best examined interspecifically rather than intraspecifically.


2016 ◽  
Vol 6 (5) ◽  
pp. 1447-1456 ◽  
Author(s):  
Luiz Carlos S. Lopez ◽  
Marcos S. L. Figueiredo ◽  
Maria Paula de Aguiar Fracasso ◽  
Daniel Oliveira Mesquita ◽  
Ulisses Umbelino Anjos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document