scholarly journals Variability in larval gut pH regulation defines sensitivity to ocean acidification in six species of the Ambulacraria superphylum

2017 ◽  
Vol 284 (1864) ◽  
pp. 20171066 ◽  
Author(s):  
Marian Hu ◽  
Yung-Che Tseng ◽  
Yi-Hsien Su ◽  
Etienne Lein ◽  
Hae-Gyeong Lee ◽  
...  

The unusual rate and extent of environmental changes due to human activities may exceed the capacity of marine organisms to deal with this phenomenon. The identification of physiological systems that set the tolerance limits and their potential for phenotypic buffering in the most vulnerable ontogenetic stages become increasingly important to make large-scale projections. Here, we demonstrate that the differential sensitivity of non-calcifying Ambulacraria (echinoderms and hemichordates) larvae towards simulated ocean acidification is dictated by the physiology of their digestive systems. Gastric pH regulation upon experimental ocean acidification was compared in six species of the superphylum Ambulacraria. We observed a strong correlation between sensitivity to ocean acidification and the ability to regulate gut pH. Surprisingly, species with tightly regulated gastric pH were more sensitive to ocean acidification. This study provides evidence that strict maintenance of highly alkaline conditions in the larval gut of Ambulacraria early life stages may dictate their sensitivity to decreases in seawater pH. These findings highlight the importance of identifying and understanding pH regulatory systems in marine larval stages that may contribute to substantial energetic challenges under near-future ocean acidification scenarios.

2021 ◽  
pp. jeb.240705
Author(s):  
Inga Petersen ◽  
William W. J. Chang ◽  
Marian Y. Hu

Regulation of ionic composition and pH is a requisite of all digestive systems in the animal kingdom. Larval stages of the marine superphylum ambulacraria, including echinoderms and hemichordates, were demonstrated to have highly alkaline conditions in their midgut with the underlying epithelial transport mechanisms being largely unknown.Using ion-selective microelectrodes, the present study demonstrated that pluteus larvae of the purple sea urchin have highly alkaline pH (pH ∼9) and low [Na+] ( ̴120 mM) in their midgut fluids, compared to the ionic composition of the surrounding sea water. We pharmacologically investigated the role of Na+/H+-exchangers in intracellular pH regulation and midgut proton and sodium maintenance using the NHE inhibitor 5-(n-ethyl-n-isopropyl)amiloride (EIPA). Basolateral EIPA application decreased midgut pH while luminal application, via micro-injections increased midgut [Na+], without affecting pH. Immunohistochemical analysis demonstrated a luminal localization of NHE-2 (SpSlc9a2) in the midgut epithelium. Specific knockdown of spslc9a2 using vivo morpholinos led to an increase in midgut [Na+] without affecting pH. Acute acidification experiments in combination with qPCR analysis and measurements of midgut pH and [Na+] identified two other NHE isoforms, Spslc9a7 and SpSlc9a8 that potentially contribute to the regulation of [Na+] and pH in midgut fluids.This work provides new insights to ion regulatory mechanisms in the midgut epithelium of sea urchin larvae. The involvement of NHEs in regulating pH and Na+ balance in midgut fluids shows conserved features to insect and vertebrate digestive systems and may contribute to the ability of sea urchin larvae to cope with changes in seawater pH.


Author(s):  
Takeshi Mizunoya ◽  
Noriko Nozaki ◽  
Rajeev Kumar Singh

AbstractIn the early 2000s, Japan instituted the Great Heisei Consolidation, a national strategy to promote large-scale municipal mergers. This study analyzes the impact that this strategy could have on watershed management. We select the Lake Kasumigaura Basin, the second largest lake in Japan, for the case study and construct a dynamic expanded input–output model to simulate the ecological system around the Lake, the socio-environmental changes over the period, and their mutual dependency for the period 2012–2020. In the model, we regulate and control the following water pollutants: total nitrogen, total phosphorus, and chemical oxygen demand. The results show that a trade-off between economic activity and the environment can be avoided within a specific range of pollution reduction, given that the prefectural government implements optimal water environment policies, assuming that other factors constraining economic growth exist. Additionally, municipal mergers are found to significantly reduce the budget required to improve the water environment, but merger budget efficiency varies nonlinearly with the reduction rate. Furthermore, despite the increase in financial efficiency from the merger, the efficiency of installing domestic wastewater treatment systems decreases drastically beyond a certain pollution reduction level and eventually reaches a limit. Further reductions require direct regulatory instruments in addition to economic policies, along with limiting the output of each industry. Most studies on municipal mergers apply a political, administrative, or financial perspective; few evaluate the quantitative impact of municipal mergers on the environment and environmental policy implications. This study addresses these gaps.


2018 ◽  
Vol 10 (11) ◽  
pp. 4302 ◽  
Author(s):  
Qi Chen ◽  
Weiteng Shen ◽  
Bing Yu

China’s marine fisheries are undergoing large-scale environmental changes associated with climate change, marine pollution, and overfishing. The assessment of marine fisheries vulnerability has become extremely necessary for fisheries management and sustainable development. However, studies on China’s marine fisheries vulnerability remains sparse. This study aimed to provide an analysis of the inter-provincial level vulnerability of China’s marine fisheries under multiple disturbances. The vulnerability measure was composed of exposure, sensitivity, and adaptive capacity indicators specific to marine fisheries based on the Intergovernmental Panel on Climate Change (IPCC) definitions. Results showed that Liaoning, Hebei, Fujian, and Hainan provinces appeared to be the most vulnerable; Shanghai appeared to be less vulnerable among China’s 11 coastal provinces; and the key sources of vulnerability differed considerably among coastal regions. The high vulnerability regions could be divided into two different patterns according to the combination of exposure, sensitivity, and adaptive capacity, but they all had one thing in common: relatively low adaptive capacity. While some existing coercive measures to reduce dependence on fisheries were found to be helpful in China, the reality showed that appropriate adaptation measures such as improving fishermen’s education level and increasing vocational training may be helpful in enhancing the existing policy effectiveness.


2013 ◽  
Vol 10 (3) ◽  
pp. 1835-1847 ◽  
Author(s):  
U. Riebesell ◽  
J. Czerny ◽  
K. von Bröckel ◽  
T. Boxhammer ◽  
J. Büdenbender ◽  
...  

Abstract. One of the great challenges in ocean change research is to understand and forecast the effects of environmental changes on pelagic communities and the associated impacts on biogeochemical cycling. Mesocosms, experimental enclosures designed to approximate natural conditions, and in which environmental factors can be manipulated and closely monitored, provide a powerful tool to close the gap between small-scale laboratory experiments and observational and correlative approaches applied in field surveys. Existing pelagic mesocosm systems are stationary and/or restricted to well-protected waters. To allow mesocosm experimentation in a range of hydrographic conditions and in areas considered most sensitive to ocean change, we developed a mobile sea-going mesocosm facility, the Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS). The KOSMOS platform, which can be transported and deployed by mid-sized research vessels, is designed for operation in moored and free-floating mode under low to moderate wave conditions (up to 2.5 m wave heights). It encloses a water column 2 m in diameter and 15 to 25 m deep (∼50–75 m3 in volume) without disrupting the vertical structure or disturbing the enclosed plankton community. Several new developments in mesocosm design and operation were implemented to (i) minimize differences in starting conditions between mesocosms, (ii) allow for extended experimental duration, (iii) precisely determine the mesocosm volume, (iv) determine air–sea gas exchange, and (v) perform mass balance calculations. After multiple test runs in the Baltic Sea, which resulted in continuous improvement of the design and handling, the KOSMOS platform successfully completed its first full-scale experiment in the high Arctic off Svalbard (78°56.2′ N, 11°53.6′ E) in June/July 2010. The study, which was conducted in the framework of the European Project on Ocean Acidification (EPOCA), focused on the effects of ocean acidification on a natural plankton community and its impacts on biogeochemical cycling and air–sea exchange of climate-relevant gases. This manuscript describes the mesocosm hardware, its deployment and handling, CO2 manipulation, sampling and cleaning, including some further modifications conducted based on the experiences gained during this study.


2020 ◽  
Author(s):  
Szewczyk Grzegorz ◽  
Krzysztof Lipka ◽  
Piotr Wężyk ◽  
Karolina Zięba-Kulawik ◽  
Monika Winczek

As a result of environmental changes, assessment indexes for the agricultural landscape have been changing dramatically. Being at the interface of human activity and the natural environment, hunting is particularly sensitive to environmental changes, such as increasing deforestation or large-scale farming. The classical categorisation of hunting grounds takes into account the area, forest cover, number of forest complexes, fertility of forest habitats, lack of continuity of areas potentially favourable to wild animals. Landscape assessment methods used in architecture often better reflect the actual breeding and hunting value of a given area, especially in relation to fields and forests. The forest-field mosaic, large spatial fragmentation as well as interweaving of natural environment elements with buildings do not have to be the factors that limit the numbers of small game. Identification of the constituents of architectural-landscape interiors: content and significance assessment, determination of the functional role or assessment based on the general environmental values being represented take into account factors important for the existence of game, in particular small game.


2021 ◽  
Vol 4 ◽  
Author(s):  
Ondrej Vargovčík ◽  
Zuzana Čiamporová-Zaťovičová ◽  
Fedor Čiampor Jr

State of ecosystems and biodiversity protection are becoming the key interests for modern society due to climate change and negative human impacts (Leese 2018). Environmental changes in freshwaters are indicated also by benthic communities, especially in sensitive ecosystems like alpine lakes (Fjellheim 2009). Moreover, remoteness and isolation of alpine lakes make them a source of biodiversity, which is worth conserving (Hamerlík 2014). A promising tool for efficient large-scale monitoring of aquatic communities is DNA metabarcoding (Leese 2018). In this study, we applied metabarcoding to analyse macrozoobenthos of 12 lakes in the Tatra Mountains, using benthic bulk samples and eDNA filtered from water (Fig. 1). In compliance with recent publications, eDNA amplified with BF3/BR2 primers resulted in high percentage of non-invertebrate reads (Leese 2021). Based on in silico tests with the obtained sequences, we confirm that the recently developed EPTDr2n primer enables minimizing non-target amplification even with eDNA filtered from alpine-lake water (Elbrecht and Leese 2017). This ability is facilitated by 3’ end of the primer and we observed the two important mismatches in non-target sequences from our study (Leese 2021). Thus, our future analyses of eDNA (and bulk-sample fixative) will benefit from the new primer. Concerning bulk samples, a wide range of invertebrate taxa was assigned to the OTUs and they showed good congruence with previous studies using morphological determination (e.g. Krno 2006). Certain differences with (and among) the previous records per lake were observed, which could suggest ecological changes, but at the moment the influence of sampling error cannot be excluded. In eDNA, several taxa were congruent with the previous records, but their amount and read abundance was considerably lower due to non-target amplification. Apart from that, filling gaps in barcoding databases remains one of our priorities, as identification to species or genus level was not yet possible for some invertebrate OTUs. In addition, we subjected the NGS data to denoising and abundance-filtering in order to explore haplotype-level diversity (Andújar 2021). Although more comprehensive conclusions will be possible only after obtaining data from more lakes and years, already the two metabarcoding experiments presented here enabled us to efficiently detect within-species genetic diversity and identify a large variety of taxa, including groups that would otherwise be omitted or very challenging to identify. This underlines the potential of DNA methods to provide valuable ecological and biodiversity data across the tree of life for modern biomonitoring. This study was realized with support from VEGA 2/0030/17 and VEGA 2/0084/21.


2012 ◽  
Vol 9 (9) ◽  
pp. 12985-13017 ◽  
Author(s):  
U. Riebesell ◽  
J. Czerny ◽  
K. von Bröckel ◽  
T. Boxhammer ◽  
J. Büdenbender ◽  
...  

Abstract. One of the great challenges in ocean change research is to understand and forecast the effects of environmental changes on pelagic communities and the associated impacts on biogeochemical cycling. Mesocosms, experimental enclosures designed to approximate natural conditions, and in which environmental factors can be manipulated and closely monitored, provide a powerful tool to close the gap between single species laboratory experiments and observational and correlative approaches applied in field surveys. Existing pelagic mesocosm systems are stationary and/or restricted to well-protected waters. To allow mesocosm experimentation in a range of hydrographic conditions and in areas considered most sensitive to ocean change, we developed a mobile, sea-going mesocosm facility, the Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS). The KOSMOS platform, which can be transported and deployed by mid-sized research vessels, is designed for operation in moored and free-floating mode under low to moderate wave conditions (up to 2.5 m wave heights). It encloses a water column 2 m in diameter and 15 to 25 m deep (~50–75 m3 in volume) without disrupting the vertical structure or disturbing the enclosed plankton community. Several new developments in mesocosm design and operation were implemented to (i) minimize differences in starting conditions between mesocosms, (ii) allow for extended experimental duration, (iii) precisely determine the mesocosm volume, (iv) determine air–sea gas exchange, and (v) perform mass balance calculations. After multiple test runs in the Baltic Sea, which resulted in continuous improvement of the design and handling, the KOSMOS platform successfully completed its first full-scale experiment in the high Arctic off Svalbard (78° 56.2′ N, 11° 53.6′ E) in June/July 2010. The study, which was conducted in the framework of the European Project on Ocean Acidification (EPOCA), focused on the effects of ocean acidification on a natural plankton community and its impacts on biogeochemical cycling and air/sea exchange of climate relevant gases. This manuscript describes the mesocosm hardware, its deployment and handling, CO2 manipulation, sampling and cleaning, including some further modifications conducted based on the experiences gained during this study.


2011 ◽  
Vol 356-360 ◽  
pp. 903-907
Author(s):  
Ai Jun Li ◽  
Yan Ying Guo ◽  
Feng He ◽  
Rui Jia Yuan

There are few indicator systems available for monitoring and assessing the environmental quality of large-scale regions. We constructed an indicator system for integrated assessment of the environmental quality of the Dianchi Basin. First, the definition of regional environmental quality is determined by both the supply of materials and energy in the region and the extent to which the region is polluted. Second, the indicator categories used for assessment mainly comprise vegetation biomass and the concentrations of various pollutants. Third, owing to spatial heterogeneity of a region, evaluation of the regional environment first requires division into sub-regions, each of which should be relatively homogeneous with regard to physical conditions (e.g. marine and terrestrial) and appearance (e.g. vegetation cover). Finally, the mathematical models for assessing regional environmental quality can be built according to the relationships between the various indicators, the sub-regions and regional environmental quality. The indicator system built using this approach can reflect environmental changes over time and identifies reasons for environmental variation.


2023 ◽  
Vol 55 (1) ◽  
pp. 1-39
Author(s):  
Thanh Tuan Nguyen ◽  
Thanh Phuong Nguyen

Representing dynamic textures (DTs) plays an important role in many real implementations in the computer vision community. Due to the turbulent and non-directional motions of DTs along with the negative impacts of different factors (e.g., environmental changes, noise, illumination, etc.), efficiently analyzing DTs has raised considerable challenges for the state-of-the-art approaches. For 20 years, many different techniques have been introduced to handle the above well-known issues for enhancing the performance. Those methods have shown valuable contributions, but the problems have been incompletely dealt with, particularly recognizing DTs on large-scale datasets. In this article, we present a comprehensive taxonomy of DT representation in order to purposefully give a thorough overview of the existing methods along with overall evaluations of their obtained performances. Accordingly, we arrange the methods into six canonical categories. Each of them is then taken in a brief presentation of its principal methodology stream and various related variants. The effectiveness levels of the state-of-the-art methods are then investigated and thoroughly discussed with respect to quantitative and qualitative evaluations in classifying DTs on benchmark datasets. Finally, we point out several potential applications and the remaining challenges that should be addressed in further directions. In comparison with two existing shallow DT surveys (i.e., the first one is out of date as it was made in 2005, while the newer one (published in 2016) is an inadequate overview), we believe that our proposed comprehensive taxonomy not only provides a better view of DT representation for the target readers but also stimulates future research activities.


2017 ◽  
Vol 10 (1) ◽  
pp. 127-154 ◽  
Author(s):  
Iris Kriest ◽  
Volkmar Sauerland ◽  
Samar Khatiwala ◽  
Anand Srivastav ◽  
Andreas Oschlies

Abstract. Global biogeochemical ocean models contain a variety of different biogeochemical components and often much simplified representations of complex dynamical interactions, which are described by many ( ≈ 10 to  ≈ 100) parameters. The values of many of these parameters are empirically difficult to constrain, due to the fact that in the models they represent processes for a range of different groups of organisms at the same time, while even for single species parameter values are often difficult to determine in situ. Therefore, these models are subject to a high level of parametric uncertainty. This may be of consequence for their skill with respect to accurately describing the relevant features of the present ocean, as well as their sensitivity to possible environmental changes. We here present a framework for the calibration of global biogeochemical ocean models on short and long timescales. The framework combines an offline approach for transport of biogeochemical tracers with an estimation of distribution algorithm (Covariance Matrix Adaption Evolution Strategy, CMA-ES). We explore the performance and capability of this framework by five different optimizations of six biogeochemical parameters of a global biogeochemical model, simulated over 3000 years. First, a twin experiment explores the feasibility of this approach. Four optimizations against a climatology of observations of annual mean dissolved nutrients and oxygen determine the extent to which different setups of the optimization influence model fit and parameter estimates. Because the misfit function applied focuses on the large-scale distribution of inorganic biogeochemical tracers, parameters that act on large spatial and temporal scales are determined earliest, and with the least spread. Parameters more closely tied to surface biology, which act on shorter timescales, are more difficult to determine. In particular, the search for optimum zooplankton parameters can benefit from a sound knowledge of maximum and minimum parameter values, leading to a more efficient optimization. It is encouraging that, although the misfit function does not contain any direct information about biogeochemical turnover, the optimized models nevertheless provide a better fit to observed global biogeochemical fluxes.


Sign in / Sign up

Export Citation Format

Share Document