scholarly journals Assessing the Vulnerability of Marine Fisheries in China: Towards an Inter-Provincial Perspective

2018 ◽  
Vol 10 (11) ◽  
pp. 4302 ◽  
Author(s):  
Qi Chen ◽  
Weiteng Shen ◽  
Bing Yu

China’s marine fisheries are undergoing large-scale environmental changes associated with climate change, marine pollution, and overfishing. The assessment of marine fisheries vulnerability has become extremely necessary for fisheries management and sustainable development. However, studies on China’s marine fisheries vulnerability remains sparse. This study aimed to provide an analysis of the inter-provincial level vulnerability of China’s marine fisheries under multiple disturbances. The vulnerability measure was composed of exposure, sensitivity, and adaptive capacity indicators specific to marine fisheries based on the Intergovernmental Panel on Climate Change (IPCC) definitions. Results showed that Liaoning, Hebei, Fujian, and Hainan provinces appeared to be the most vulnerable; Shanghai appeared to be less vulnerable among China’s 11 coastal provinces; and the key sources of vulnerability differed considerably among coastal regions. The high vulnerability regions could be divided into two different patterns according to the combination of exposure, sensitivity, and adaptive capacity, but they all had one thing in common: relatively low adaptive capacity. While some existing coercive measures to reduce dependence on fisheries were found to be helpful in China, the reality showed that appropriate adaptation measures such as improving fishermen’s education level and increasing vocational training may be helpful in enhancing the existing policy effectiveness.

2021 ◽  
Vol 8 ◽  
Author(s):  
Yuru Li ◽  
Shuyang Ma ◽  
Caihong Fu ◽  
Yongjun Tian ◽  
Jianchao Li ◽  
...  

Fish community structure (FCS) of the Yellow Sea (YS) is affected by multiple pressures. Quantifying the responses of indicators of FCS (IFCSs) to pressures is a key aspect of ecosystem-based fisheries management. Quantitative methodology has hitherto been rarely applied to evaluate the performance of ecological indicators in response to physical and anthropogenic pressures and management actions. In this study, we adopted a quantitative and flexible framework to quantify the performance of IFCSs in the YS as well as to identify a suite of operational IFCSs to evaluate the status of the FCS via two state-space approaches. A total of 22 IFCSs were tested for their responses to three types of pressures including anthropogenic activities (fishing), large-scale climate change, and regional environmental variables. Our results indicate that the majority of IFCSs have good performance in terms of sensitivity in their responses to pressures, but weak performance in terms of robustness. The IFCSs tend to respond stronger to fishing than to large-scale climatic indices and regional environmental indices both in terms of sensitivity and robustness. A final indicator suite of five best-performing IFCSs was identified. The five IFCSs include total catch (ToC), mean trophic level (MTL), the ratio of catch of large predatory groups to total catch (LPC/ToC), mean temperature of catch (MTC) [or alternatively catch of small pelagic groups (SPC)], and functional evenness based on thermal groups (T-J′FD), all of which show regime shift patterns consistent with climate change. Compared to a reference period (1960–1964), the status of the current FCS has been obviously changed, and the long-term trajectories of the final indicator suite is consistent with that of fishing pressure. This study demonstrates the applicability of the indicator-testing framework in appraising the status of FCS, and facilitates moving towards ecosystem-based fisheries management in the YS.


2020 ◽  
Vol 12 (19) ◽  
pp. 8256
Author(s):  
Vanshika Dhamija ◽  
Roopam Shukla ◽  
Christoph Gornott ◽  
PK Joshi

In India, a reduction in wheat crop yield would lead to a widespread impact on food security. In particular, the most vulnerable people are severely exposed to food insecurity. This study estimates the climate change vulnerability of wheat crops with respect to heterogeneities in time, space, and weighting methods. The study uses the Intergovernmental Panel on Climate Change (IPCC) framework of vulnerability while using composite indices of 27 indicators to explain exposure, sensitivity, and adaptive capacity. We used climate projections under current (1975–2005) conditions and two future (2021–2050) Representation Concentration Pathways (RCPs), 4.5 and 8.5, to estimate exposure to climatic risks. Consistency across three weighting methods (Analytical Hierarchy Process (AHP), Principal Component Analysis (PCA), and Equal Weights (EWs)) was evaluated. Results of the vulnerability profile suggest high vulnerability of the wheat crop in northern and central India. In particular, the districts Unnao, Sirsa, Hardoi, and Bathinda show high vulnerability and high consistency across current and future climate scenarios. In total, 84% of the districts show more than 75% consistency in the current climate, and 83% and 68% of the districts show more than 75% consistency for RCP 4.5 and RCP 8.5 climate scenario for the three weighting methods, respectively. By using different weighting methods, it was possible to quantify “method uncertainty” in vulnerability assessment and enhance robustness in identifying most vulnerable regions. Finally, we emphasize the importance of communicating uncertainties, both in data and methods in vulnerability research, to effectively guide adaptation planning. The results of this study would serve as the basis for designing climate impacts adjusted adaptation measures for policy interventions.


2016 ◽  
Vol 24 (2) ◽  
pp. 164-186 ◽  
Author(s):  
I. Aubin ◽  
A.D. Munson ◽  
F. Cardou ◽  
P.J. Burton ◽  
N. Isabel ◽  
...  

The integration of functional traits into vulnerability assessments is a promising approach to quantitatively capture differences in species sensitivity and adaptive capacity to climate change, allowing the refinement of tree species distribution models. In response to a clear need to identify traits that are responsive to climate change and applicable in a management context, we review the state of knowledge of the main mechanisms, and their associated traits, that underpin the ability of boreal and temperate tree species to persist and (or) shift their distribution in a changing climate. We aimed to determine whether current knowledge is sufficiently mature and available to be used effectively in vulnerability assessments. Marshalling recent conceptual advances and assessing data availability, our ultimate objective is to guide modellers and practitioners in finding and selecting sets of traits that can be used to capture differences in species’ ability to persist and migrate. While the physiological mechanisms that determine sensitivity to climate change are relatively well understood (e.g., drought-induced cavitation), many associated traits have not been systematically documented for North American trees and differences in methodology preclude their widespread integration into vulnerability assessments (e.g., xylem recovery capacity). In contrast, traits traditionally associated with the ability to migrate and withstand fire are generally well documented, but new key traits are emerging in the context of climate change that have not been as well characterized (e.g., age of optimum seed production). More generally, lack of knowledge surrounding the extent and patterns in intraspecific trait variation, as well as co-variation and interaction among traits, limit our ability to use this approach to assess tree adaptive capacity. We conclude by outlining research needs and potential strategies for the development of trait-based knowledge applicable in large-scale modelling efforts, sketching out important aspects of trait data organization that should be part of a coordinated effort by the forest science community.


2020 ◽  
Author(s):  
Stefan Kienberger ◽  
Jutta-Lucia Leis

<p>Climate risk, and related impacts, are determined by a variety of natural, climatological and socio-economic factors. In its fifth Assessment Report, the Intergovernmental Panel on Climate Change has adapted the concept and terminology in this respect. The challenge is: How can relevant influencing factors be identified and integrated? And, how can these factors be represented spatially and integratively in order to provide decision makers with a sound basis for adaptation measures? The central starting question is: Where do I do what (and when)? Within the Austrian ACRP project 'RESPECT', a novel climate change risk analysis for the natural hazard 'flooding' was developed. Special attention is paid to the modelling of socio-economic and physical vulnerability and its integration into a spatially explicit climate risk analysis. As a result, spatial and thematic hotspots of social and physical vulnerability and climate risk for Austria are identified, which serve as a basis for the identification of adaptation measures.</p><p>As a result, climate risk maps are available for Austria, which show risk and vulnerability hotspots as homogeneous spatial regions, independent from administrative boundaries and traditional raster-based approaches. These hotspots are quantitatively evaluated by an index value as a measure of climate risk. In addition to the purely quantitative evaluation, it is also possible to characterise and present the spatial units qualitatively, in terms of 'problem areas' and contributing factors. This is a significant development compared to 'traditional' spatial units (grid cell based; based on administrative units). Thus the question mentioned at the beginning can be answered - where are which intervention measures necessary. The results are available for socio-economic and physical climate risk, which are flanked by corresponding hazard and vulnerability maps. Results for the present and the future have been produced using proxy indicators from the high-resolution Austrian climate change scenario data (ÖKS15). This makes it possible to identify future hot spots under the assumption of different climate scenarios. The presentations presents the adapted risk concept and methodological approach, respectively, and reflects critically on the opportunities and challenges of climate risk analysis in Austria and in general for the planning of climate change adaptation measures.  </p>


2020 ◽  
Vol 20 (1) ◽  
pp. 351-364
Author(s):  
Yu Insang

This study applies the concept of risk defined by IPCC’s fifth assessment report to Daegu City, Ulsan City, Gyeongsangbuk Province, and Gangwon Province to assess and analyze snow disaster risks. Sub-indicators of three hazards, six exposures, four vulnerabilities, and five adaptive capacities were selected, and spatial information based on grids or administrative districts was constructed. The weight of each indicator was calculated with the Analytic Hierarchy Process (AHP), and the maximum inconsistency of the expert survey result was 9.86%, indicating high consistency. The results show that administrative districts with an space average risk of “very high” are Ulleung, Gangneung, Sokcho, Yangyang, Pyeongchang, Goseong, Donghae, Samcheok, and Jeongseon, accounting for 16.7% of the entire administrative district. One region has a “high” risk, Taebaek (1.9%), and those with a “moderately high” risk were Uljin and Inje (3.8%). These regions have very high levels of hazards, very low exposure, very high vulnerability, and low adaptive capacity; hence, hazard, vulnerability, and adaptive capacity had a significant effect on the increased risk. Pyeongchang had the highest standard deviation of gridded risk among the 12 regions with a risk above moderately high. The standard deviation of gridded risk for Pyeongchang was estimated to be 1.0 with the highest value, followed by Inje, with 0.69, and Jeongseon, with 0.55; therefore, differentiated climate change adaptation measures should be established according to gridded risks.


2013 ◽  
Vol 27 (1) ◽  
pp. 81
Author(s):  
Ifan Ridlo Suhelm

Tidal inundation, flood and land subsidence are the problems faced by Semarang city related to climate change. Intergovernmental Panel on Climate Change (IPCC) predicted the increase of sea level rise 18-59 cm during 1990-2100 while the temperature increase 0,6°C to 4°C during the same period. The Semarang coastal city was highly vulnerable to sea level rise and it increased with two factors, topography and land subsidence. The purpose of this study was to map the adaptive capacity of coastal areas in the face of the threat of disasters caused by climate change. The parameters used are Network Number, Employee based educational background, Source Main Livelihoods, Health Facilities, and Infrastructure Road. Adaptive capacity of regions classified into 3 (three) classes, namely low, medium and high. The results of the study showed that most of the coastal area of Semarang have adaptive capacities ranging from low to moderate, while the village with low capacity totaling 58 villages (58.62%) of the total coastal district in the city of Semarang.


2021 ◽  
Vol 21 (4) ◽  
pp. 3059-3071
Author(s):  
Guocheng Wang ◽  
Zhongkui Luo ◽  
Yao Huang ◽  
Wenjuan Sun ◽  
Yurong Wei ◽  
...  

Abstract. Grassland aboveground biomass (AGB) is a critical component of the global carbon cycle and reflects ecosystem productivity. Although it is widely acknowledged that dynamics of grassland biomass is significantly regulated by climate change, in situ evidence at meaningfully large spatiotemporal scales is limited. Here, we combine biomass measurements from six long-term (> 30 years) experiments and data in existing literatures to explore the spatiotemporal changes in AGB in Inner Mongolian temperate grasslands. We show that, on average, annual AGB over the past 4 decades is 2561, 1496 and 835 kg ha−1, respectively, in meadow steppe, typical steppe and desert steppe in Inner Mongolia. The spatiotemporal changes of AGB are regulated by interactions of climatic attributes, edaphic properties, grassland type and livestock. Using a machine-learning-based approach, we map annual AGB (from 1981 to 2100) across the Inner Mongolian grasslands at the spatial resolution of 1 km. We find that on the regional scale, meadow steppe has the highest annual AGB, followed by typical and desert steppe. Future climate change characterized mainly by warming could lead to a general decrease in grassland AGB. Under climate change, on average, compared with the historical AGB (i.e. average of 1981–2019), the AGB at the end of this century (i.e. average of 2080–2100) would decrease by 14 % under Representative Concentration Pathway (RCP) 4.5 and 28 % under RCP8.5. If the carbon dioxide (CO2) enrichment effect on AGB is considered, however, the estimated decreases in future AGB can be reversed due to the growing atmospheric CO2 concentrations under both RCP4.5 and RCP8.5. The projected changes in AGB show large spatial and temporal disparities across different grassland types and RCP scenarios. Our study demonstrates the accuracy of predictions in AGB using a modelling approach driven by several readily obtainable environmental variables and provides new data at a large scale and fine resolution extrapolated from field measurements.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2658 ◽  
Author(s):  
Eduardo Martínez-Gomariz ◽  
Luca Locatelli ◽  
María Guerrero ◽  
Beniamino Russo ◽  
Montse Martínez

Pluvial flooding in Badalona (Spain) occurs during high rainfall intensity events, which in the future could be more frequent according to the latest report from the Intergovernmental Panel on Climate Change (IPCC). In this context, the present study aims at quantifying the potential impacts of climate change for the city of Badalona. A comprehensive pluvial flood multi risk assessment has been carried out for the entire municipality. The assessment has a twofold target: People safety, based on both pedestrians’ and vehicles’ stability, and impacts on the economic sector in terms of direct damages on properties and vehicles, and indirect damages due to businesses interruption. Risks and damages have also been assessed for the projected future rainfall conditions which enabled the comparison with the current ones, thereby estimating their potential increment. Moreover, the obtained results should be the first step to assess the efficiency of adaptation measures. The novelty of this paper is the integration of a detailed 1D/2D urban drainage model with multiple risk criteria. Although, the proposed methodology was tested for the case study of Badalona (Spain), it can be considered generally applicable to other urban areas affected by pluvial flooding.


Sign in / Sign up

Export Citation Format

Share Document