scholarly journals An early chondrichthyan and the evolutionary assembly of a shark body plan

2018 ◽  
Vol 285 (1870) ◽  
pp. 20172418 ◽  
Author(s):  
Michael I. Coates ◽  
John A. Finarelli ◽  
Ivan J. Sansom ◽  
Plamen S. Andreev ◽  
Katharine E. Criswell ◽  
...  

Although relationships among the major groups of living gnathostomes are well established, the relatedness of early jawed vertebrates to modern clades is intensely debated. Here, we provide a new description of Gladbachus , a Middle Devonian (Givetian approx. 385-million-year-old) stem chondrichthyan from Germany, and one of the very few early chondrichthyans in which substantial portions of the endoskeleton are preserved. Tomographic and histological techniques reveal new details of the gill skeleton, hyoid arch and jaws, neurocranium, cartilage, scales and teeth. Despite many features resembling placoderm or osteichthyan conditions, phylogenetic analysis confirms Gladbachus as a stem chondrichthyan and corroborates hypotheses that all acanthodians are stem chondrichthyans. The unfamiliar character combination displayed by Gladbachus , alongside conditions observed in acanthodians, implies that pre-Devonian stem chondrichthyans are severely under-sampled and strongly supports indications from isolated scales that the gnathostome crown group originated at the latest by the early Silurian (approx. 440 Ma). Moreover, phylogenetic results highlight the likely convergent evolution of conventional chondrichthyan conditions among earliest members of this primary gnathostome division, while skeletal morphology points towards the likely suspension feeding habits of Gladbachus , suggesting a functional origin of the gill slit condition characteristic of the vast majority of living and fossil chondrichthyans.

1998 ◽  
Vol 37 (6-7) ◽  
pp. 225-231 ◽  
Author(s):  
N. H. B. M. Kaag ◽  
E. M. Foekema ◽  
M. C. Th. Scholten

Marine and freshwater mesocosm-scale experiments with contaminated sediments have shown that there is a direct relationship between the accumulated contaminant levels and the feeding habits of the organisms used. The highest levels of PAHs and PCBs were found in the sediment feeding lugworm Arenicola marina and in Tubifex worms. The levels of contaminants in the suspension feeding mussels Mytilus edulis and the zebra mussels, Dreissena polymorpha, were not influenced by the contaminant content of the sediments, but were related instead to the level of contaminants in the sea water above. Intermediate levels were found in the baltic tellin, Macoma balthica, which is a filter feeder as well as a deposit feeder, depending on the availability of food. These results show that there is no simple relationship between contaminant concentration in the sediments and bioavailability. Higher levels of contaminants do not necessarily lead to higher levels of these contaminants in Arenicola, due to differences in the sediment structure and the ageing of the contamination. On the other hand, toxic effects are related to the internal concentrations of certain chemicals. The internal concentrations observed in Arenicola may provide a good estimation of the true bioavailability of sedimentary contaminants and can also be used as an indicator for potential environmental effects.


2019 ◽  
Vol 286 (1907) ◽  
pp. 20191247 ◽  
Author(s):  
Luke A. Parry ◽  
Gregory D. Edgecombe ◽  
Dan Sykes ◽  
Jakob Vinther

Machaeridians are Palaeozoic animals that are dorsally armoured with serialized, imbricating shell plates that cover or enclose the body. Prior to the discovery of an articulated plumulitid machaeridian from the Early Ordovician of Morocco that preserved unambiguous annelid characters (segmental parapodia with chaetae), machaeridians were a palaeontological mystery, having been previously linked to echinoderms, barnacles, tommotiids (putative stem-group brachiopods) or molluscs. Although the annelid affinities of machaeridians are now firmly established, their position within the phylum and relevance for understanding the early evolution of Annelida is less secure, with competing hypotheses placing Machaeridia in the stem or deeply nested within the crown group of annelids. We describe a scleritome of Plumulites bengtsoni from the Fezouata Formation of Morocco that preserves an anterior jaw apparatus consisting of at least two discrete elements that exhibit growth lines. Although jaws have multiple independent origins within the annelid crown group, comparable jaws are present only within Phyllodocida, the clade that contains modern aphroditiforms (scaleworms and relatives). Phylogenetic analysis places a monophyletic Machaeridia within the crown group of Phyllodocida in total-group Aphroditiformia, consistent with a common origin of machaeridian shell plates and scaleworm elytrae. The inclusion of machaeridians in Aphroditiformia truncates the ghost lineage of Phyllodocida by almost a hundred million years.


2020 ◽  
Vol 6 (49) ◽  
pp. eabc6721
Author(s):  
John R. Paterson ◽  
Gregory D. Edgecombe ◽  
Diego C. García-Bellido

Radiodonts are nektonic stem-group euarthropods that played various trophic roles in Paleozoic marine ecosystems, but information on their vision is limited. Optical details exist only in one species from the Cambrian Emu Bay Shale of Australia, here assigned to Anomalocaris aff. canadensis. We identify another type of radiodont compound eye from this deposit, belonging to ‘Anomalocaris’ briggsi. This ≤4-cm sessile eye has >13,000 lenses and a dorsally oriented acute zone. In both taxa, lenses were added marginally and increased in size and number throughout development, as in many crown-group euarthropods. Both species’ eyes conform to their inferred lifestyles: The macrophagous predator A. aff. canadensis has acute stalked eyes (>24,000 lenses each) adapted for hunting in well-lit waters, whereas the suspension-feeding ‘A.’ briggsi could detect plankton in dim down-welling light. Radiodont eyes further demonstrate the group’s anatomical and ecological diversity and reinforce the crucial role of vision in early animal ecosystems.


2018 ◽  
Vol 115 (25) ◽  
pp. 6428-6433 ◽  
Author(s):  
Iván Ayuso-Fernández ◽  
Francisco J. Ruiz-Dueñas ◽  
Angel T. Martínez

The resurrection of ancestral enzymes of now-extinct organisms (paleogenetics) is a developing field that allows the study of evolutionary hypotheses otherwise impossible to be tested. In the present study, we target fungal peroxidases that play a key role in lignin degradation, an essential process in the carbon cycle and often a limiting step in biobased industries. Ligninolytic peroxidases are secreted by wood-rotting fungi, the origin of which was recently established in the Carboniferous period associated with the appearance of these enzymes. These first peroxidases were not able to degrade lignin directly and used diffusible metal cations to attack its phenolic moiety. The phylogenetic analysis of the peroxidases of Polyporales, the order in which most extant wood-rotting fungi are included, suggests that later in evolution these enzymes would have acquired the ability to degrade nonphenolic lignin using a tryptophanyl radical interacting with the bulky polymer at the surface of the enzyme. Here, we track this powerful strategy for lignin degradation as a phenotypic trait in fungi and show that it is not an isolated event in the evolution of Polyporales. Using ancestral enzyme resurrection, we study the molecular changes that led to the appearance of the same surface oxidation site in two distant peroxidase lineages. By characterization of the resurrected enzymes, we demonstrate convergent evolution at the amino acid level during the evolution of these fungi and track the different changes leading to phylogenetically distant ligninolytic peroxidases from ancestors lacking the ability to degrade nonphenolic lignin.


2019 ◽  
Vol 286 (1912) ◽  
pp. 20191336 ◽  
Author(s):  
Linda Frey ◽  
Michael Coates ◽  
Michał Ginter ◽  
Vachik Hairapetian ◽  
Martin Rücklin ◽  
...  

Anatomical knowledge of early chondrichthyans and estimates of their phylogeny are improving, but many taxa are still known only from microremains. The nearly cosmopolitan and regionally abundant Devonian genus Phoebodus has long been known solely from isolated teeth and fin spines. Here, we report the first skeletal remains of Phoebodus from the Famennian (Late Devonian) of the Maïder region of Morocco, revealing an anguilliform body, specialized braincase, hyoid arch, elongate jaws and rostrum, complementing its characteristic dentition and ctenacanth fin spines preceding both dorsal fins. Several of these features corroborate a likely close relationship with the Carboniferous species Thrinacodus gracia , and phylogenetic analysis places both taxa securely as members of the elasmobranch stem lineage. Identified as such, phoebodont teeth provide a plausible marker for range extension of the elasmobranchs into the Middle Devonian, thus providing a new minimum date for the origin of the chondrichthyan crown-group. Among pre-Carboniferous jawed vertebrates, the anguilliform body shape of Phoebodus is unprecedented, and its specialized anatomy is, in several respects, most easily compared with the modern frilled shark Chlamydoselachus . These results add greatly to the morphological, and by implication ecological, disparity of the earliest elasmobranchs.


2015 ◽  
Vol 112 (28) ◽  
pp. 8678-8683 ◽  
Author(s):  
Jie Yang ◽  
Javier Ortega-Hernández ◽  
Sylvain Gerber ◽  
Nicholas J. Butterfield ◽  
Jin-bo Hou ◽  
...  

We describe Collinsium ciliosum from the early Cambrian Xiaoshiba Lagerstätte in South China, an armored lobopodian with a remarkable degree of limb differentiation including a pair of antenna-like appendages, six pairs of elongate setiferous limbs for suspension feeding, and nine pairs of clawed annulated legs with an anchoring function. Collinsium belongs to a highly derived clade of lobopodians within stem group Onychophora, distinguished by a substantial dorsal armature of supernumerary and biomineralized spines (Family Luolishaniidae). As demonstrated here, luolishaniids display the highest degree of limb specialization among Paleozoic lobopodians, constitute more than one-third of the overall morphological disparity of stem group Onychophora, and are substantially more disparate than crown group representatives. Despite having higher disparity and appendage complexity than other lobopodians and extant velvet worms, the specialized mode of life embodied by luolishaniids became extinct during the Early Paleozoic. Collinsium and other superarmored lobopodians exploited a unique paleoecological niche during the Cambrian explosion.


2016 ◽  
Vol 3 (2) ◽  
pp. 150635 ◽  
Author(s):  
Vanesa L. De Pietri ◽  
R. Paul Scofield ◽  
Nikita Zelenkov ◽  
Walter E. Boles ◽  
Trevor H. Worthy

Presbyornithids were the dominant birds in Palaeogene lacustrine assemblages, especially in the Northern Hemisphere, but are thought to have disappeared worldwide by the mid-Eocene. Now classified within Anseriformes (screamers, ducks, swans and geese), their relationships have long been obscured by their strange wader-like skeletal morphology. Reassessment of the late Oligocene South Australian material attributed to Wilaru tedfordi , long considered to be of a stone-curlew (Burhinidae, Charadriiformes), reveals that this taxon represents the first record of a presbyornithid in Australia. We also describe the larger Wilaru prideauxi sp. nov. from the early Miocene of South Australia, showing that presbyornithids survived in Australia at least until ca 22 Ma. Unlike on other continents, where presbyornithids were replaced by aquatic crown-group anatids (ducks, swans and geese), species of Wilaru lived alongside these waterfowl in Australia. The morphology of the tarsometatarsus of these species indicates that, contrary to other presbyornithids, they were predominantly terrestrial birds, which probably contributed to their long-term survival in Australia. The morphological similarity between species of Wilaru and the Eocene South American presbyornithid Telmabates antiquus supports our hypothesis of a Gondwanan radiation during the evolutionary history of the Presbyornithidae. Teviornis gobiensis from the Late Cretaceous of Mongolia is here also reassessed and confirmed as a presbyornithid. These findings underscore the temporal continuance of Australia’s vertebrates and provide a new context in which the phylogeny and evolutionary history of presbyornithids can be examined.


2008 ◽  
Vol 20 (4) ◽  
pp. 393-412 ◽  
Author(s):  
John A. Long ◽  
Brian Choo ◽  
Gavin C. Young

AbstractA new basal actinopterygian fish, Donnrosenia schaefferi gen. et sp. nov., is described from the Middle Devonian (Givetian) Aztec Siltstone of southern Victoria Land, Antarctica. Donnrosenia gen. nov. is characterized by the large parietals which are of almost equivalent size to the frontals, very small intertemporals, a small accessory operculum situated dorsally to the prominent anterodorsal process of the suboperculum, a deep dentary with anterior flexure, porous ornamentation on the clavicle, an elongate body form with macromeric squamation, an absence of paired fringing fulcra on the fins, and pectoral lepidotrichia which are unsegmented for much of their length. A phylogenetic analysis based on dermal skeletal features of Devonian actinopterygians indicates that Donnrosenia gen. nov. is the sister taxon to Howqualepis from the Middle Devonian of Victoria, Australia, and is embedded within a possible clade containing the actinopterygians from the Gogo Formation, Western Australia. This supports the concept of an endemic radiation of East Gondwanan actinopterygians, and reinforces the already strong biogeographical similarities between the Middle Devonian palaeofaunas of Australia and Antarctica.


Author(s):  
Per Erik Ahlberg ◽  
Jennifer A. Clack

AbstractThe lower jaw of the Devonian tetrapod Acanthostega is described for the first time. Redescriptions are provided for the lower jaws of the elpistostegid Panderichthys, the Devonian tetrapods Elginerpeton, Obruchevichthys, Metaxygnathus, Ventastega and Ichthyostega, and the Carboniferous tetrapods Crassigyrinus, Megalocephalus and Gephyrostegus. The character distri- butions thus revealed differ considerably from previous accounts, particularly in the wide distribution of certain primitive characters. Meckelian ossification in the middle part of the jaw is widespread among Devonian tetrapods, being demonstrably absent only in Acanthostega. Among Carboniferous tetrapods, a tooth-bearing parasymphysial plate is shown to be present in Crassigyrinus and Megalocephalus (having already been demonstrated by other authors in Whatcheeria and Greererpeton). A phylogenetic analysis of 26 early tetrapods including all the aforementioned genera, scored for 51 lower jaw characters, produces at least 2,500 equally parsimonious trees. However, the lack of resolution lies largely in a big top end polychotomy containing anthracosaurs, temnospondyls, seymouriamorphs, microsaurs and a nectridean-amniote clade. Below this polycho- tomy, which may correspond approximately to the tetrapod crown group, there is a well-resolved stem-group containing, in descending order, Megalocephalus, Greererpeton, Crassigyrinus, (jaws associated with) Tulerpeton, Whatcheeria, Acanthostega, Metaxygnathus, Ichthyostega, Ventastega and Metaxygnathus (unresolved), an Elginerpeton-Obruchevichthys clade, and Panderichthys. This conflicts with recently published phylogenies by Coates and Lebedev & Coates, which place Tulerpeton and all post-Devonian tetrapods in the amphibian or amniote branches of the tetrapod crown group.


Phytotaxa ◽  
2017 ◽  
Vol 295 (2) ◽  
pp. 101 ◽  
Author(s):  
MARK WILSON ◽  
GRAHAM S. FRANK ◽  
LOU JOST ◽  
ALEC M. PRIDGEON ◽  
SEBASTIAN VIEIRA-URIBE ◽  
...  

Most of the species studied in this paper have previously been placed in either Pleurothallis or Lepanthes. However, at one time or another, members of the group have also been placed in the genera Andinia, Brachycladium, Lueranthos, Masdevalliantha, Neooreophilus, Oreophilus, Penducella, Salpistele and Xenosia. Phylogenetic analyses of nuclear ITS and plastid matK sequences indicate that these species form a strongly supported clade that is only distantly related to Lepanthes and is distinct from Pleurothallis and Salpistele. Since this clade includes the type species of Andinia, A. dielsii, and it has taxonomic precedence over all other generic names belonging to this group, Andinia is re-circumscribed and expanded to include 72 species segregated into five subgenera: Aenigma, Andinia, Brachycladium, Masdevalliantha and Minuscula. The required taxonomic transfers are made herein. We hypothesize that convergent evolution towards a similar pollinator syndrome involving deceit pollination via pseudocopulation by Diptera resulted in a similar floral morphology between species of subgenus Brachycladium and species of Lepanthes; hence the prior placement of the species of subgenus Brachycladium in Lepanthes. Species of the re-circumscribed Andinia are confined exclusively to the Andes, ranging from about 1,200 to 3,800 m, from Colombia south to Bolivia, making the generic name very apt. Elevational distributions of the individual clades are discussed in relation to the possible evolutionary diversification of the most species-rich clade, subgenus Brachycladium.


Sign in / Sign up

Export Citation Format

Share Document