A Discussion on the measurement and interpretation of changes of strain in the Earth - Earth tides, ocean tides and tidal loading

The distortion of the Earth’s gravitational potential field by the A:f2 ocean tide has been calculated, accounting for both the elastic deformation of the Earth and the self potential of the water. The potential field generated by the ocean tide is almost everywhere greater than a tenth, and over much of the ocean is half as large as the lunar driving potential itself, and may have a significant influence on the tidal motion. Load tides in tilt, strain, and vertical acceleration also arise from the deformation of the Earth by the ocean tide. These load tides are probably of more geophysical and oceanographic interest than the body tides raised by the Sun and Moon.

The generation of a lunar laser ranging ephemeris uses numerical integrations of the lunar orbit and physical librations and a data fitting procedure. The relativistic equations of motion for the nine planets and the Moon are simultaneously integrated with perturbations on the lunar orbit from zonal harmonics of the Earth through degree four, lunar tesseral harmonics through degree and order three, and a tidal bulge on the Earth. The integration of the lunar rotation follows from the torques of the Earth and Sun on a solid body Moon with gravitational harmonics through degree and order three. The fitting program utilizes the integrations of the orbit and physical librations, nominal values of U.T. 1 and polar motion from the Bureau International de l’Heure, and includes corrections for atmospheric delays, nutations of the Earth’s pole taken to the body axis, solid body Earth tides, monthly and bimonthly tidal corrections in U. T. 1, and relativistic clock transformations. Not only do the fits give new starting conditions for the orbit and libration integrations but improved observatory and retroreflector coordinates, the mass ratio Sun/(Earth + Moon), and harmonics of the lunar gravity field.


Geophysics ◽  
1961 ◽  
Vol 26 (5) ◽  
pp. 643-643
Author(s):  
Danilo A. Rigassi

It can be assumed that the effect of luni‐solar attraction depends, to a certain extent, upon the geological structure. For instance, this effect should not be equal on the two sides of a fault separating rocks of different densities and competencies. If, on two geologically different blocks separated by a fault, two different values of the earth tidal motion can be measured, there is an earth tidal anomaly evidencing the presence of the fault. In other words, measuring and comparing earth tidal motions can be considered as a new geophysical prospecting method.


2011 ◽  
Vol 5 (1) ◽  
pp. 18-34 ◽  
Author(s):  
Rick Dolphijn

Starting with Antonin Artaud's radio play To Have Done With The Judgement Of God, this article analyses the ways in which Artaud's idea of the body without organs links up with various of his writings on the body and bodily theatre and with Deleuze and Guattari's later development of his ideas. Using Klossowski (or Klossowski's Nietzsche) to explain how the dominance of dialogue equals the dominance of God, I go on to examine how the Son (the facialised body), the Father (Language) and the Holy Spirit (Subjectification), need to be warded off in order to revitalize the body, reuniting it with ‘the earth’ it has been separated from. Artaud's writings on Balinese dancing and the Tarahumaran people pave the way for the new body to appear. Reconstructing the body through bodily practices, through religion and above all through art, as Deleuze and Guattari suggest, we are introduced not only to new ways of thinking theatre and performance art, but to life itself.


2018 ◽  
Vol 8 (1) ◽  
pp. 49-66
Author(s):  
Monika Szuba

The essay discusses selected poems from Thomas Hardy's vast body of poetry, focusing on representations of the self and the world. Employing Maurice Merleau-Ponty's concepts such as the body-subject, wild being, flesh, and reversibility, the essay offers an analysis of Hardy's poems in the light of phenomenological philosophy. It argues that far from demonstrating ‘cosmic indifference’, Hardy's poetry offers a sympathetic vision of interrelations governing the universe. The attunement with voices of the Earth foregrounded in the poems enables the self's entanglement in the flesh of the world, a chiasmatic intertwining of beings inserted between the leaves of the world. The relation of the self with the world is established through the act of perception, mainly visual and aural, when the body becomes intertwined with the world, thus resulting in a powerful welding. Such moments of vision are brief and elusive, which enhances a sense of transitoriness, and, yet, they are also timeless as the self becomes immersed in the experience. As time is a recurrent theme in Hardy's poetry, this essay discusses it in the context of dwelling, the provisionality of which is demonstrated in the prevalent sense of temporality, marked by seasons and birdsong, which underline the rhythms of the world.


2020 ◽  
Author(s):  
Hongbo Tan ◽  
Chongyong Shen ◽  
Guiju Wu

<p>Solid Earth is affected by tidal cycles triggered by the gravity attraction of the celestial bodies. However, about 70% the Earth is covered with seawater which is also affected by the tidal forces. In the coastal areas, the ocean tide loading (OTL) can reach up to 10% of the earth tide, 90% for tilt, and 25% for strain (Farrell, 1972). Since 2007, a high-precision continuous gravity observation network in China has been established with 78 stations. The long-term high-precision tidal data of the network can be used to validate, verifying and even improve the ocean tide model (OTM).</p><p>In this paper, tidal parameters of each station were extracted using the harmonic analysis method after a careful editing of the data. 8 OTMs were used for calculating the OTL. The results show that the Root-Mean-Square of the tidal residuals (M<sub>0</sub>) vary between 0.078-1.77 μgal, and the average errors as function of the distance from the sea for near(0-60km), middle(60-1000km) and far(>1000km) stations are 0.76, 0.30 and 0.21 μgal. The total final gravity residuals (Tx) of the 8 major constituents (M<sub>2</sub>, S<sub>2</sub>, N<sub>2</sub>, K<sub>2</sub>, K<sub>1</sub>, O<sub>1</sub>, P<sub>1</sub>, Q<sub>1</sub>) for the best OTM has amplitude ranging from 0.14 to 3.45 μgal. The average efficiency for O<sub>1</sub> is 77.0%, while 73.1%, 59.6% and 62.6% for K<sub>1</sub>, M<sub>2</sub> and Tx. FES2014b provides the best corrections for O<sub>1</sub> at 12 stations, while SCHW provides the best for K<sub>1 </sub><sub>,</sub>M<sub>2</sub>and Tx at 12,8and 9 stations. For the 11 costal stations, there is not an obvious best OTM. The models of DTU10, EOT11a and TPXO8 look a litter better than FES2014b, HAMTIDE and SCHW. For the 17 middle distance stations, SCHW is the best OTM obviously. For the 7 far distance stations, FES2014b and SCHW model are the best models. But the correction efficiency is worse than the near and middle stations’.</p><p>The outcome is mixed: none of the recent OTMs performs the best for all tidal waves at all stations. Surprisingly, the Schwiderski’s model although is 40 years old with a coarse resolution of 1° x 1° is performing relative well with respect to the more recent OTM. Similar results are obtained in Southeast Asia (Francis and van Dam, 2014). It could be due to systematic errors in the surroundings seas affecting all the ocean tides models. It's difficult to detect, but invert the gravity attraction and loading effect to map the ocean tides in the vicinity of China would be one way.</p>


2002 ◽  
Vol 205 (19) ◽  
pp. 2997-3008 ◽  
Author(s):  
Ravi Ramamurti ◽  
William C. Sandberg ◽  
Rainald Löhner ◽  
Jeffrey A. Walker ◽  
Mark W. Westneat

SUMMARY Many fishes that swim with the paired pectoral fins use fin-stroke parameters that produce thrust force from lift in a mechanism of underwater flight. These locomotor mechanisms are of interest to behavioral biologists,biomechanics researchers and engineers. In the present study, we performed the first three-dimensional unsteady computations of fish swimming with oscillating and deforming fins. The objective of these computations was to investigate the fluid dynamics of force production associated with the flapping aquatic flight of the bird wrasse Gomphosus varius. For this computational work, we used the geometry of the wrasse and its pectoral fin,and previously measured fin kinematics, as the starting points for computational investigation of three-dimensional (3-D) unsteady fluid dynamics. We performed a 3-D steady computation and a complete set of 3-D quasisteady computations for a range of pectoral fin positions and surface velocities. An unstructured, grid-based, unsteady Navier—Stokes solver with automatic adaptive remeshing was then used to compute the unsteady flow about the wrasse through several complete cycles of pectoral fin oscillation. The shape deformation of the pectoral fin throughout the oscillation was taken from the experimental kinematics. The pressure distribution on the body of the bird wrasse and its pectoral fins was computed and integrated to give body and fin forces which were decomposed into lift and thrust. The velocity field variation on the surface of the wrasse body, on the pectoral fins and in the near-wake was computed throughout the swimming cycle. We compared our computational results for the steady, quasi-steady and unsteady cases with the experimental data on axial and vertical acceleration obtained from the pectoral fin kinematics experiments. These comparisons show that steady state computations are incapable of describing the fluid dynamics of flapping fins. Quasi-steady state computations, with correct incorporation of the experimental kinematics, are useful when determining trends in force production, but do not provide accurate estimates of the magnitudes of the forces produced. By contrast, unsteady computations about the deforming pectoral fins using experimentally measured fin kinematics were found to give excellent agreement, both in the time history of force production throughout the flapping strokes and in the magnitudes of the generated forces.


1971 ◽  
Vol 61 (1) ◽  
pp. 203-215
Author(s):  
Cheh Pan

abstract Recent advances in instrumentation, digital computer technology and mathematical theory promote the error analysis of Earth-tide data. Various statistical techniques developed and used in other fields are applicable in the study of Earth tides, and the accuracy of the Earth's rigidity constants determined from the tides will be greatly improved with the help of these techniques. The fundamentals of the statistical techniques of autocorrelation, crosscorrelation, convolution, statistical means, bandpass filtering, correlation coefficients, power spectra, coherency and equalization are described, and their principal applications in the Earth-tide analysis summarized. Examples of effective application of these techniques in the elimination of the errors in the tidal data such as those introduced from instrumental drift, phase differences between the observed and predicted tides, etc. are discussed. This work is an attempt to introduce statistical analysis into the Earth-tide study.


Author(s):  
Olga Popova

The asteroid impact near the Russian city of Chelyabinsk on February 15, 2013, was the largest airburst on Earth since the 1908 Tunguska event, causing a natural disaster in an area with a population exceeding 1 million. On clear morning at 9:20 a.m. local time, an asteroid about 19 m in size entered the Earth atmosphere near southern Ural Mountains (Russia) and, with its bright illumination, attracted the attention of hundreds of thousands of people. Dust trail in the atmosphere after the bolide was tens of kilometers long and was visible for several hours. Thousands of different size meteorites were found in the areas south-southwest of Chelyabinsk. A powerful airburst, which was formed due to meteoroid energy deposition, shattered thousands of windows and doors in Chelyabinsk and wide surroundings, with flying glass injuring many residents. The entrance and destruction of the 500-kt Chelyabinsk asteroid produced a number of observable effects, including light and thermal radiation; acoustic, infrasound, blast, and seismic waves; and release of interplanetary substance. This unexpected and unusual event is the most well-documented bolide airburst, and it attracted worldwide attention. The airburst was observed globally by multiple instruments. Analyses of the observational data allowed determination of the size of the body that caused the superbolide, its velocity, its trajectory, its behavior in the atmosphere, the strength of the blast wave, and other characteristics. The entry of the 19-m-diameter Chelyabinsk asteroid provides a unique opportunity to calibrate the different approaches used to model meteoroid entry and to calculate the damaging effects. The recovered meteorite material was characterized as brecciated LL5 ordinary chondrite, in which three different lithologies can be distinguished (light-colored, dark-colored, and impact-melt). The structure and properties of meteorites demonstrate that before encountering Earth, the Chelyabinsk asteroid had experienced a very complex history involving at least a few impacts with other bodies and thermal metamorphism. The Chelyabinsk airburst of February 15, 2013, was exceptional because of the large kinetic energy of the impacting body and the damaging airburst that was generated. Before the event, decameter-sized objects were considered to be safe. With the Chelyabinsk event, it is possible, for the first time, to link the damage from an impact event to a well-determined impact energy in order to assess the future hazards of asteroids to lives and property.


2016 ◽  
Vol 823 ◽  
pp. 205-210
Author(s):  
Adrian Ioan Niculescu

The paper presents a complex quarter car model obtained with ADAMS software, View module, useful in the first stage of suspension dimensioning and optimization.The model is equipped with compression and rebound stopper buffer and suspension trim corrector.The proposed quarter car model with two degrees of freedom (wheel and body) performs all these goals allowing changing:Geometrical elementsPosition of equilibrium, depending on vehicle load;Trim correction;Elastic and dissipative characteristics of the suspension and tire;Suspension stroke;Road profile, assessed either by simple or summation of harmonic functions or reproducing real roadsBuffers (for stroke limitation) position and characteristics;The models developed provide information on:Vertical stability assessed by vertical movements of the body and the longitudinal and transversal stability evaluated based on adherence characterized by wheel ground contact force and frequency of soil detachment wheel.Comfort assessed on the basis of body vertical acceleration and collision forces to the stroke ends.The body-road clearanceThe trim corrector efficiencyAll above performances evaluated function the road unevenness, acceleration, deceleration, turning regime.The damping characteristic is defined by damping forces at different speed for each strokes respectively one for rebound and other for compression.The contact force road-wheel is defined based tire rigidity law.The stopper buffer forces on rebound and compression are defined based each specific rigidity characteristics.The road excitation is realized with a function generator.The software allow the model evolution visualisation in real time, also generating the diagrams of displacements, forces, accelerations, speeds, for each elements or for relative evolution between diverse elements.The simulation was realized for unloaded and fully loaded car using a road generated by a sum of harmonic functions presented in equation (8).The excitation covers the specific frequencies area, being under the body frequencies up to the wheel proper frequencies.The realized ¼ car model, have reached the goal to evaluate the suspension trim correction advantages.The simulations confirm the trim corrector increases the suspension performances, thus for the analyzed case the trim corrector increase simultaneous:Body-ground clearance (evaluated by body higher increasing) between 18.5÷55.1 %Body stability (evaluated by maximal body displacement) between 9.8÷11.4 %Body comfort (evaluated by maximal body acceleration) between 3.4÷35.5 %Adherence (evaluated by maximal and RMS wheel-groundcontact force variation) between 7.0÷12.1 %Body and axles protection (evaluated by buffer strike force) between 10.8÷38.2 %


Sign in / Sign up

Export Citation Format

Share Document