A Discussion on the physics of the solar atmosphere - Current sheets

Current sheets are believed to be of prime importance in the solar atmosphere. Low down they may form at supergranulation boundaries, whereas up in the corona they have been suggested as a prominence formation site. In addition, they may occur when rapidly emerging flux presses up against pre-existing magnetic fields: if rapid magnetic field annihilation and reconnection is then triggered, a surge or a flare may be produced. Comments are given about three aspects of general current sheet theory. The position and shape of the current sheet which forms between two-dimensional dipole sources is calculated. The thermal instability which occurs when the length of the sheet exceeds a critical value is described. Finally, a simple model of magnetic field annihilation is presented.

2015 ◽  
Vol 15 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Matthias Ratajczak ◽  
Thomas Wondrak ◽  
Klaus Timmel ◽  
Frank Stefani ◽  
Sven Eckert

AbstractIn continuous casting DC magnetic fields perpendicular to the wide faces of the mold are used to control the flow in the mold. Especially in this case, even a rough knowledge of the flow structure in the mold would be highly desirable. The contactless inductive flow tomography (CIFT) allows to reconstruct the dominating two-dimensional flow structure in a slab casting mold by applying one external magnetic field and by measuring the flow-induced magnetic fields outside the mold. For a physical model of a mold with a cross section of 140 mm×35 mm we present preliminary measurements of the flow field in the mold in the presence of a magnetic brake. In addition, we show first reconstructions of the flow field in a mold with the cross section of 400 mm×100 mm demonstrating the upward scalability of CIFT.


2012 ◽  
Vol 8 (S294) ◽  
pp. 13-24
Author(s):  
Hongqi Zhang

AbstractThe helicity is important to present the basic topological configuration of magnetic field in solar atmosphere. The distribution of magnetic helicity in solar atmosphere is presented by means of the observational (vector) magnetograms. As the kinetic helicity in the solar subatmosphere can be inferred from the velocity field based on the technique of the helioseismology and used to compare with the magnetic helicity in the solar atmosphere, the observational helicities provide the important chance for the confirmation on the generation of magnetic fields in the subatmosphere and solar dynamo models also. In this paper, we present the observational magnetic and kinetic helicity in solar active regions and corresponding questions, except the relationship with solar eruptive phenomena.


1990 ◽  
Vol 140 ◽  
pp. 379-380
Author(s):  
Kazunari Shibata ◽  
Ryoji Matsumoto

Magnetohydrodynamic (MHD) mechanisms producing radio lobes, shells, and filaments in the Galactic center as well as in the gas disk of the Galaxy are studied by using two-dimensional MHD code: (a) the explosion in a magnetized disk, (b) the interaction of a rotating disk with vertical fields, and (c) the nonlinear Parker instability in toroidal magnetic fields in a disk. In all cases, dense shells or filaments are created along magnetic field lines in a transient state, in contrast to the quasi-equilibrium filaments perpendicular to magnetic fields.


2020 ◽  
Vol 34 (32) ◽  
pp. 2030007
Author(s):  
Andrei G. Lebed

It was theoretically predicted more than 20 years ago [A. G. Lebed and K. Yamaji, Phys. Rev. Lett. 80, 2697 (1998)], that a triplet quasi-two-dimensional (Q2D) superconductor could restore its superconducting state in parallel magnetic fields, which are higher than its upper critical magnetic field, [Formula: see text]. It is very likely that, recently, such phenomenon has been experimentally discovered in the Q2D superconductor UTe2 by Nicholas Butch, Sheng Ran, and their colleagues and has been confirmed by Japanese–French team. We review our previous theoretical results using such a general method that it describes the reentrant superconductivity in the abovementioned compound and will hopefully describes the similar phenomena, which can be discovered in other Q2D superconductors.


2004 ◽  
Vol 11 (5/6) ◽  
pp. 579-587 ◽  
Author(s):  
L. M. Zelenyi ◽  
H. V. Malova ◽  
V. Yu. Popov ◽  
D. Delcourt ◽  
A. S. Sharma

Abstract. Thin current sheets represent important and puzzling sites of magnetic energy storage and subsequent fast release. Such structures are observed in planetary magnetospheres, solar atmosphere and are expected to be widespread in nature. The thin current sheet structure resembles a collapsing MHD solution with a plane singularity. Being potential sites of effective energy accumulation, these structures have received a good deal of attention during the last decade, especially after the launch of the multiprobe CLUSTER mission which is capable of resolving their 3D features. Many theoretical models of thin current sheet dynamics, including the well-known current sheet bifurcation, have been developed recently. A self-consistent 1D analytical model of thin current sheets in which the tension of the magnetic field lines is balanced by the ion inertia rather than by the plasma pressure gradients was developed earlier. The influence of the anisotropic electron population and of the corresponding electrostatic field that acts to restore quasi-neutrality of the plasma is taken into account. It is assumed that the electron motion is fluid-like in the direction perpendicular to the magnetic field and fast enough to support quasi-equilibrium Boltzmann distribution along the field lines. Electrostatic effects lead to an interesting feature of the current density profile inside the current sheet, i.e. a narrow sharp peak of electron current in the very center of the sheet due to fast curvature drift of the particles in this region. The corresponding magnetic field profile becomes much steeper near the neutral plane although the total cross-tail current is in all cases dominated by the ion contribution. The dependence of electrostatic effects on the ion to electron temperature ratio, the curvature of the magnetic field lines, and the average electron magnetic moment is also analyzed. The implications of these effects on the fine structure of thin current sheets and their potential impact on substorm dynamics are presented.


2016 ◽  
Vol 12 (S327) ◽  
pp. 77-81
Author(s):  
S. Candelaresi ◽  
D. I. Pontin ◽  
G. Hornig

AbstractUsing a magnetic carpet as model for the near surface solar magnetic field we study its effects on the propagation of energy injectected by photospheric footpoint motions. Such a magnetic carpet structure is topologically highly non-trivial and with its magnetic nulls exhibits qualitatively different behavior than simpler magnetic fields. We show that the presence of magnetic fields connecting back to the photosphere inhibits the propagation of energy into higher layers of the solar atmosphere, like the solar corona. By applying certain types of footpoint motions the magnetic field topology is is greatly reduced through magnetic field reconnection which facilitates the propagation of energy and disturbances from the photosphere.


2020 ◽  
Author(s):  
Xiaoshuai Zhu ◽  
Thomas Wiegelmann

<div><span><span lang="en-US">Both magnetic field and plasma play important roles in activities in the solar atmosphere. Unfortunately only the magnetic fields in the photosphere are routinely measured precisely. We aim to extrapolate these photospheric </span></span><span><span lang="en-US">vector magnetograms upwards into  the solar atmosphere. In this work </span><span lang="en-US">we are mainly interested in reconstructing the upper solar photosphere </span><span lang="en-US">and chromosphere. In these layers magnetic and non-magnetic forces are equally important. Consequently we have to compute an equilibrium of plasma </span></span><span><span lang="en-US">and magnetic forces with a magnetohydrostatic model. A optimization approach which minimize a functional defined by the magnetohydrostatic equations is used in the model. In this talk/poster, I will present a strict test of the new code with a radiative MHD simulation and its first application to a high resolution vector magnetogram measured by SUNRISE/IMaX.</span></span></div>


2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
V. I. Nizhankovskii

Change of the chemical potential of electrons in a GaAs-AlxGa1−xAs heterojunction was measured in magnetic fields up to 6.5 T at several temperatures from 2.17 to 12.3 K. A thermodynamic equation of state of two-dimensional electron gas well describes the experimental results.


The first part of the paper is a physical discussion of the way in which a magnetic field affects the stability of a fluid in motion. Particular emphasis is given to how the magnetic field affects the interaction of the disturbance with the mean motion. The second part is an analysis of the stability of plane parallel flows of fluids with finite viscosity and conductivity under the action of uniform parallel magnetic fields. We show that, in general, three-dimensional disturbances are the most unstable, thus disagreeing with the conclusion of Michael (1953) and Stuart (1954). We show how results obtained for two-dimensional disturbances can be used to calculate the most unstable three-dimensional disturbances and thence we prove that a parallel magnetic field can never completely stabilize a parallel flow.


2015 ◽  
Vol 26 (01) ◽  
pp. 161-184 ◽  
Author(s):  
P. D. Hislop ◽  
N. Popoff ◽  
N. Raymond ◽  
M. P. Sundqvist

We complete the analysis of the band functions for two-dimensional magnetic Schrödinger operators with piecewise constant magnetic fields. The discontinuity of the magnetic field can create edge currents that flow along the discontinuity, which have been described by physicists. Properties of these edge currents are directly related to the behavior of the band functions. The effective potential of the fiber operator is an asymmetric double well (eventually degenerated) and the analysis of the splitting of the bands incorporates the asymmetry. If the magnetic field vanishes, the reduced operator has essential spectrum and we provide an explicit description of the band functions located below the essential spectrum. For non-degenerate magnetic steps, we provide an asymptotic expansion of the band functions at infinity. We prove that when the ratio of the two magnetic fields is rational, a splitting of the band functions occurs and has a natural order, predicted by numerical computations.


Sign in / Sign up

Export Citation Format

Share Document