Structure in the upper lunar crust

Estimates are made of the degree of lithification and of structure densities which are compatible with lunar in situ seismic profiles in the top 30 km of the Moon. Estimates are based on comparison of results of passive and active lunar seismic experiments with the pressure dependence of elastic moduli for various classes of lunar samples. Competent rock, such as igneous rock or recrystallized breccias with crack porosity of not more than about 0.5 % are required to satisfy velocity profiles in the depth range 1-30 km. Velocity profiles in the upper 1 km are best satisfied by comminuted material to highly fractured lithic units. These estimates constrain those thermal and shock histories which are compatible with lunar seismic results. After crystallization, or recrystallization, rock below 1 km cannot have been exposed to more than moderate shock levels. In the uppermost 1 km, an unannealed and broken rock layer would imply low thermal conductivity resulting in possible temperatures at 1 km depth of several hundred kelvins.

2020 ◽  
Vol 6 (28) ◽  
pp. eaba8949 ◽  
Author(s):  
M. Maurice ◽  
N. Tosi ◽  
S. Schwinger ◽  
D. Breuer ◽  
T. Kleine

A giant impact onto Earth led to the formation of the Moon, resulted in a lunar magma ocean (LMO), and initiated the last event of core segregation on Earth. However, the timing and temporal link of these events remain uncertain. Here, we demonstrate that the low thermal conductivity of the lunar crust combined with heat extraction by partial melting of deep cumulates undergoing convection results in an LMO solidification time scale of 150 to 200 million years. Combining this result with a crystallization model of the LMO and with the ages and isotopic compositions of lunar samples indicates that the Moon formed 4.425 ± 0.025 billion years ago. This age is in remarkable agreement with the U-Pb age of Earth, demonstrating that the U-Pb age dates the final segregation of Earth’s core.


Geosciences ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 498
Author(s):  
Deepak Dhingra

Volatile-bearing lunar surface and interior, giant magmatic-intrusion-laden near and far side, globally distributed layer of purest anorthosite (PAN) and discovery of Mg-Spinel anorthosite, a new rock type, represent just a sample of the brand new perspectives gained in lunar science in the last decade. An armada of missions sent by multiple nations and sophisticated analyses of the precious lunar samples have led to rapid evolution in the understanding of the Moon, leading to major new findings, including evidence for water in the lunar interior. Fundamental insights have been obtained about impact cratering, the crystallization of the lunar magma ocean and conditions during the origin of the Moon. The implications of this understanding go beyond the Moon and are therefore of key importance in solar system science. These new views of the Moon have challenged the previous understanding in multiple ways and are setting a new paradigm for lunar exploration in the coming decade both for science and resource exploration. Missions from India, China, Japan, South Korea, Russia and several private ventures promise continued exploration of the Moon in the coming years, which will further enrich the understanding of our closest neighbor. The Moon remains a key scientific destination, an active testbed for in-situ resource utilization (ISRU) activities, an outpost to study the universe and a future spaceport for supporting planetary missions.


2020 ◽  
Author(s):  
Quentin Nénon ◽  
Andrew R Poppe ◽  
Ali Rahmati ◽  
James P McFadden

<p>Mars has lost and is losing its atmosphere into space. Strong evidences of this come from the observation of planetary singly charged heavy ions (atomic oxygen, molecular oxygen, carbon dioxide ions) by Mars Express and MAVEN. Phobos, the closest moon of Mars, orbits only 6,000 kilometers above the red planet’s surface and is therefore a unique vantage point of the planetary atmospheric escape, with the escaping ions being implanted within the regolith of Phobos and altering the properties of the moon’s surface.</p> <p>In this presentation, we aggregate all ion observations gathered in-situ close to the orbit of Phobos by three ion instruments onboard MAVEN, from 2015 to 2019, to constrain the long-term averaged ion environment seen by the Martian moon at all longitudes along its orbit. In particular, the SupraThermal and Thermal Ion Composition (STATIC) instrument onboard MAVEN distinguishes between solar wind and planetary ions. The newly constrained long-term ion environment seen by Phobos is combined with numerical simulations of ion transport and effects in matter.</p> <p>This way, we find that planetary ions are implanted on the near side of Phobos (pointing towards Mars) inside the uppermost tens of nanometers of regolith grains. The composition of near-side grains that may be sampled by future Phobos sample return missions is therefore not only contaminated by planetary ions, as seen in lunar samples with the terrestrial atmosphere, but may show a unique record of the past atmosphere of Mars.</p> <p>The long-term fluxes of planetary ions precipitating onto Phobos are so intense that these ions weather the moon’s surface as much as or more than solar wind ions. In particular, Martian ions accelerate the long-term sputtering and amorphization of the near side regolith by a factor of 2. Another implication is that ion weathering is highly asymmetric between the near side and far side of Phobos.</p>


2019 ◽  
Vol 64 (8) ◽  
pp. 803-825
Author(s):  
S. I. Demidovaa ◽  
M. O. Anosova ◽  
N. N. Kononkova ◽  
T. Ntaflos ◽  
F. Brandstätter

Fragments of P-bearing olivine have been studied in lunar highland, mare and mingled meteorites and in «Apollo-14», «Luna-16, -20, -24» lunar samples. Olivine contains up to 0.5 wt.% P2O5 and has variable MG# number. It is associated with anorthite, pyroxene and accessory spinel group minerals, Ti and Zr oxides, phosphates, troilite and Fe-Ni metal. Three possible sources of P-bearing olivine were found in lunar material: 1) highland anorthositic-noritic-troctolitic rocks enriched in incompatible elements and thought to be related to high-Mg suite rocks: 2) late-stage products of mare basalts crystallization; 3) unusual olivine-orthopyroxene intergrowths either of meteoritic or lunar origin. Enrichment in incompatible elements may be resulted from both crystallization processes (source 2) and KREEP assimilation (sources 1 and 3). However following metasomatic processes can lead to some addition of phosphorus and other elements. The rarity of P-bearing olivines points either to the low abundance or local distribution of their sources in the lunar crust. Association with mare basalts specifies the highland-mare boundary. The presence of the evolved rocks in the studied breccias suggests possible connection of some sources with recently discovered granitic domes in Procellarum Ocean. That means the P-bearing sources are mainly localized on the visible side of the Moon.


2015 ◽  
Vol 10 (2) ◽  
pp. 2663-2681
Author(s):  
Rizk El- Sayed ◽  
Mustafa Kamal ◽  
Abu-Bakr El-Bediwi ◽  
Qutaiba Rasheed Solaiman

The structure of a series of AlSb alloys prepared by melt spinning have been studied in the as melt–spun ribbons  as a function of antimony content .The stability  of these structures has  been  related to that of the transport and mechanical properties of the alloy ribbons. Microstructural analysis was performed and it was found that only Al and AlSb phases formed for different composition.  The electrical, thermal and the stability of the mechanical properties are related indirectly through the influence of the antimony content. The results are interpreted in terms of the phase change occurring to alloy system. Electrical resistivity, thermal conductivity, elastic moduli and the values of microhardness are found to be more sensitive than the internal friction to the phase changes. 


2021 ◽  
Vol 27 (S1) ◽  
pp. 2260-2262
Author(s):  
Alexander Kling ◽  
Michelle Thompson ◽  
Jennika Greer ◽  
Philipp Heck

AIP Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 065015
Author(s):  
Fu Yi ◽  
Xupeng Qi ◽  
Xuexin Zheng ◽  
Huize Yu ◽  
Wenming Bai ◽  
...  

Polymer ◽  
2021 ◽  
pp. 123726
Author(s):  
Hajime Kishi ◽  
Takashi Saruwatari ◽  
Takemasa Mototsuka ◽  
Sanae Tanaka ◽  
Takeshi Kakibe ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Ghadami ◽  
E. Taheri-Nassaj ◽  
H. R. Baharvandi ◽  
F. Ghadami

AbstractHfB2, Si, and activated carbon powders were selected to fabricate 0–30 vol% SiC reinforced HfB2-based composite. Pressureless sintering process was performed at 2050 °C for 4 h under a vacuum atmosphere. Microstructural studies revealed that in situ SiC reinforcement was formed and distributed in the composite according to the following reaction: Si + C = SiC. A maximum relative density of 98% was measured for the 20 vol% SiC containing HfB2 composite. Mechanical investigations showed that the hardness and the fracture toughness of these composites were increased and reached up to 21.2 GPa for HfB2-30 vol% SiC and 4.9 MPa.m1/2 for HfB2-20 vol% SiC, respectively. Results showed that alpha-SiC reinforcements were created jagged, irregular, and elongated in shape which were in situ formed between HfB2 grains and filled the porosities. Formation of alpha-SiC contributed to improving the relative density and mechanical properties of the composite samples. By increasing SiC content, an enhanced trend of thermal conductivity was observed as well as a reduced trend for electrical conductivity.


Author(s):  
Dezhi Zhang ◽  
Yingru Li ◽  
Zhenliang Yang ◽  
Bingqing Li ◽  
Zhiyi Wang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document