Evolution of regional metamorphism during back-arc stretching and subsequent crustal shortening in the 1.9 Ga Wopmay Orogen, Canada

The stratigraphic units, structural elements and metamorphic mineral assemblages of a regional metamorphic culmination in the 1.9 Ga Wopmay Orogen are exposed over greater than 30 km of composite structural depth, in a series of oblique sections produced by cross folding. Regional metamorphism developed continuously in three sequential, rapidly changing thermo-tectonic régimes within an evolving continental magmatic arc. At ca . 1900 Ma, stretching of intra-arc crust resulted in the accumulation of clastic sediment and bimodal volcanic rift-fill deposits. The onset (first stage) of regional metamorphism is marked by high- T low P mineral assemblages, condensed metamorphic zonal sequences and extensive areas of high-grade gneisses devoid of associated plutons. These features are interpreted in terms of a high thermal gradient related to stretching and thinning of the continental lithosphere. Five to ten million years after stretching, following deposition of a west-facing sedimentary prism, a suite of 1896—1878 Ma plutons was emplaced into the rift and margin deposits as they underwent subhorizontal shortening and deformation during the Calderian Orogeny. Thrusted and folded syn-orogenic foredeep deposits are also intruded by the syn-tectonic plutons. At high and intermediate structural levels, syn-tectonic metamorphic mineral growth and metamorphic zonal sequences which are spatially related to the plutons, document heat advection into the deforming marginal prism and mark a second stage of regional metamorphism related to the emplacement of the plutonic bodies. Inverted mineral isograds in autochthonous Proterozoic units beneath a basal décollement record downward thermal relaxation of isotherms following east-directed Calderian transport of the deformed, thickened, and still hot marginal prism over a relatively cold basement. Derivation of multi-point P - T trajectories from post-tectonic, poikiloblastic garnets charts metamorphic mineral growth during uplift and erosion of the internal zone, documenting the third (final) stage of regional metamorphism in Wopmay Orogen. The short erosional time interval (less than 11 Ma) between tectonic thickening and the end of uplift constrains the heat required for this last metamorphic stage to be inherited from the two preceding thermo-tectonic régimes: epicontinental stretching and the emplacement of the syn-tectonic plutonic suite.

1984 ◽  
Vol 21 (5) ◽  
pp. 567-583 ◽  
Author(s):  
D. A. Archibald ◽  
T. E. Krogh ◽  
R. L. Armstrong ◽  
E. Farrar

A north–south-trending belt of amphibolite facies regional metamorphism parallels the Purcell Trench, transects the Kootenay Arc, and is, in part, fault bounded. Towards the axis of this belt progressively higher pressure metamorphic mineral assemblages are exposed in the contact aureoles of post-kinematic, mid-Cretaceous (~100 Ma) plutons and in metapelites. Contours of K–Ar biotite dates for plutonic rocks (55–95 Ma) are regular, are broadly conformable with metamorphic isograds, appear to cross internal intrusive contacts of post-kinematic plutons, and young towards the highest pressure and temperature regional metamorphic zones. Within the sillimanite zone most micas yield K–Ar dates between 40 and 55 Ma; Rb–Sr muscovite dates for deformed and undeformed pegmatites and for muscovite-bearing monzogranite and granodiorite fall between 53 and 84 Ma. U–Pb zircon dates for the Kaniksu batholith and nearby gneiss of uncertain origin yield a lower concordia intercept of 94 Ma. Micas from mid-Jurassic and mid-Cretaceous plutons yielding conventional K–Ar dates between 55 and 100 Ma also yield plateau-shaped 40Ar/39Ar age spectra that are indicative of normal closure to Ar diffusion due to cooling during this time interval.Contrasting isotopic cooling curves for plutonic rocks in the Purcell Anticlinorium and in the metamorphic infrastructure imply that these regions had different thermal histories. Combined with metamorphic mineral assemblage data and interpreted in terms of uplift and erosion, these curves support a tectonothermal model for the development of the Kootenay Arc and Purcell Anticlinorium that involves (1) mid-Cretaceous emplacement of post-kinematic plutons into a tectonically dormant supra-structure accompanying renewed heating, deformation, and metamorphism in the deepest levels of an evolving infrastructure; (2) slow cooling from mid- to Late Cretaceous time; (3) uplift and erosion of the continental terrace wedge and post-kinematic plutons and parts of the mid-Cretaceous infrastructure in latest Cretaceous–earliest Tertiary time as these rocks were thrust eastward over a steplike feature in the basement leading to the formation of the Purcell Anticlinorium; and (4) rapid uplift and cooling of the metamorphic infrastructure in Eocene time.


2019 ◽  
Vol 56 (12) ◽  
pp. 1309-1317 ◽  
Author(s):  
Paul D. Ryan ◽  
John F. Dewey

The problem of the observed very rapid advection of heat into metamorphic thrust stacks is reviewed. Conductive models relying on the thermal relaxation of a thickened crust will not produce the observed Barrovian (medium temperature, medium pressure) assemblages within some short-lived orogens (e.g., western Ireland and Timor). Studies of the rate and timing of metamorphic mineral growth suggest that this is commonly faster than predicted by thermal relaxation. Barrovian assemblages are localised in some orogens (e.g., the Alps) but extensive in others (e.g., the Himalayas). Metamorphic mineral growth brackets deformation; consequently, slow growth is inconsistent with the rapid uplift of many orogens. Thus, no single mechanism can account for the development of Barrovian assemblages during collisional orogeny. The only mechanisms that can supply large amounts of heat for regional metamorphism quickly (<10 Myr) are: rapidly thinning the lithosphere without stretching it (e.g., by plume thermal erosion, slab drop-off, or delamination); by emplacing magma into the crust (modest deep mafic underplate and (or) very large amounts of mafic and silicic magma emplaced into the middle and upper crust); or obducting hot nappes of arc with a thin ophiolite forearc (“hot iron” mechanism). Frictional and viscous heating produces local rapid heating but not fast regional heating. Back-arc or any kind of lithospheric extension increases the geothermal gradient and heat flow but does not heat rocks up. We suggest that magmatic advection of heat-associated lithospheric thinning or “hot iron” overthrusting of an arc/ophiolite are the primary sources of heat in short-lived orogens.


2010 ◽  
Vol 33 (2) ◽  
pp. 277
Author(s):  
Juan A. Murra ◽  
Edgardo G. Baldo

An important magmatic and tectonometamorphic activity of Early and Middle Ordovician age is registered in the pre-Andean basement of the Sierras Pampeanas of Argentina. These were linked to the development of a continental magmatic arc during the Famatinian Orogeny, resulting from the approach and attachment of an alleged exotic terrane (the Precordillera Terrane), to the south western Gondwana's margin (present coordinates). A suit of meta-mafic and ultramafic rocks are exposed in the Sierras de La Huerta and Las Imanas, at the western limit of the famatinian orogen. Metaperidotites (Ol-Opx-Cpx-Am-Spl), coronitic metapyroxenites (Opx-Cpx-Spl-Am-Pl), metaquartz-norites (Opx-Pl-Am-Qtz-Bt±Grt) and metadiorites (Pl-Am-Qtz-Bt-Ep) are associated with metasedimentary rocks (marbles, gneisses and migmatites with Sil+Kfs+Grt) that reached the peak and post-peak conditions of metamorphism at middle Ordovician time. The meta-mafic rocks record a first high-grade metamorphic event (M1-730ºC and 8.4±0.5 kbar) and a second lower pressure event (M2, 720ºC and 4.5 kbar) with Cum+Hbl+Mag in a coronitic assemblage. The meta-ultramafic rocks also record the two metamorphic events, but only for the second one it was possible to calculate the P-T conditions. At latitude 32º30'S, the Famatinian magmatic arc shows a systematic compositional variation normal to its trend, i.e. in an east-west direction, which could be related to present erosion levels. In this context, the mafic and ultramafic units of Sierras de La Huerta and Las Imanas, probably represent the deepest levels of the magmatic arc which is consistent with the position that they show marginal to the orogenic belt, i.e., where the uplift and erosion rates were larger.


2002 ◽  
Vol 66 (6) ◽  
pp. 941-951 ◽  
Author(s):  
S. J. Ings ◽  
J. V. Owen

Abstract Reaction textures including corona structures in granulites from the Proterozoic Long Range Inlier of western Newfoundland are spatially associated with a Silurian (0.34 Ga) mafic intrusion, the Taylor Brook Gabbro Complex. They comprise, in metabasites and tonalitic gneiss, coronal orthopyroxene and plagioclase on garnet and, in metapelites, cordierite and spinel formed at the expense of sillimanite, garnet and quartz. Although generally interpreted to indicate near-isothermal decompression (ITD) following regional metamorphism, which in the inlier occurred at ˜1.10–1.03 Ga, these features appear to be absent elsewhere. Therefore they are interpreted to be products of contact metamorphism (near-isobaric heating – IBH) within the thermal aureole of the gabbro. Thus, there is a ˜0.7 Ga difference (i.e. mid-Proterozoic vs. mid-Silurian) between the age of the regional metamorphic mineral assemblages and the contact aureole assemblages. The observation that classic ITD features occur in this aureole environment underscores the fact that P-sensitive reactions can progress during IBH as well as by pressure release.


This contribution is concerned with the regional metamorphism of fine-grained (pelitic) sedimentary materials, and with the pelitic components of coarser sediments. It emphasizes the possible importance of purely chemical sedimentary rocks, and the preservation of chemical patterns within them, in the elucidation of some regional metamorphic mineralogical processes. The materials and examples used come largely from the category of exhalative sediments, of which stratiform metallic sulphide orebodies and their associated exhalites are important members. A few examples come from volcanic rocks that have been altered by exhalative processes. The special significance of chemical sediments stems from their propensity for the development of highly complex metamorphic silicate mineral assemblages within relatively minuscule volumes of rock, and from their commonly sharply defined chemical bedding and chemical sedimentary facies patterns. As the primary nature of such chemical bedding and chemical layering and zoning in completely unmetamorphosed materials is observable and known, and as their sharp boundaries and other well-defined features can be examined in a full range of unmetamorphosed to highly metamorphosed environments, they may be used as extremely sensitive markers for the detection and measurement of any chemical movement that may have taken place during regional metamorphism. Detailed examination of such evidence appears to indicate a general lack of diffusion and reaction, and a common lack of attainment of mineral equilibrium, in the development of the regional metamorphic silicate assemblages of a number of such stratiform ore deposits and their associated exhalative materials. This, together with the common interbedded nature of metamorphic silicate, sulphide, carbonate, etc., and the faithful maintenance of primary sedimentary chemical facies patterns within many exhalative metasediments suggests that the silicates, like the accompanying sulphides and associated compounds, may derive directly and in situ from early-formed precursor materials rather than from extensive elemental diffusion and metamorphic reaction. That particular clays and zeolites derive from specific precursors in many instances has been recognized for a long time. That many metamorphosed bedded oxides (including quartz), together with carbonates, sulphates, sulphides and authigenic silicates such as the feldspars, have derived from sedimentary: diagenetic precursors is self-evident and unavoidable, and establishes precursor derivation for at least some regional metamorphic minerals as a principle, not an hypothesis. What is not known, however, is the extent to which this principle applies to the broader spectrum of metamorphic silicates. The present contribution examines this problem. The evidence of ‘ metamorphic ’ silicates in a range of unmetamorphosed and littlemetamorphosed rocks, in present ocean-floor sediments, in unmetamorphosed volcanic alteration products and in modern geothermal systems is examined. The preservation of possible precursor materials in a variety of rocks, and the synthesis of a number of ‘ metamorphic ’ minerals by low-temperature solution experimentation and in low-temperature industrial products is considered. It is deduced that most of the well-known regional metamorphic minerals may in fact be produced directly from low-temperature sedimentary/diagenetic/alteration materials, and that such precursors may be of simple or complex kind. It is suggested that the direct derivation of regional metamorphic silicates from precursors may resolve the problem of the elusive metamorphic mineral reaction, and that the principal regional metamorphic grade indicators may be the temperatures of precursor transformations rather than temperatures of reactions. Several implications of the precursor principle are then examined: its significance in the interpretation of zoning of regional metamorphic mineral assemblages and mineral chemistry; in considerations of metamorphic grade and the development of grainsize; in the identities of certain metamorphic equilibria, intergrowths and ‘retrograde’ materials; and in the deduction of earlier environments of rock formation and alteration. In this general connection it is proposed that the overall regional metamorphic process may be substantially indigenous: that through their primary nature certain materials, e.g. some andesitic-dacitic volcaniclastic rocks, may be predisposed to metamorphose themselves, and that this may be accentuated by the petro-tectonic setting in which they form, e.g. island arc - eugeosynclinal provinces, with their characteristically inter-related calc-alkaline volcanism, riftrelated palaeogeographical features and highly patterned heat flow. Effects of climate may be superimposed on this: some of the more highly developed regional metamorphic zoning may arise in calc-alkaline volcanic sediments deposited in tropical island arc shelf areas, and in sediments laid down in large saline lakes of continental volcanic rift provinces. From all this it is proposed that the ambit of regional metamorphic petrology may be much wider than currently visualized. Just as precursor-derived oxides, carbonates, sulphates, graphite, pyrite, etc., of high-grade metasedimentary rocks may give clear indications concerning the nature and environments of formation of the original sediments, so the metamorphic silicates may yield subtle insights into palaeoprovenance, palaeogeography, palaeoclimate and a variety of weathering, volcanic alteration, sea-floor hydrothermal and other regimes. The application of metamorphic mineralogy and mineral chemistry to the search for stratiform ores in metamorphosed terranes may constitute one of the major advances in mineral exploration in the near future. It appears that there is considerable scope for further searching for possible precursor material in a variety of rocks and modern sediments (especially those of the present-day volcanic-sedimentary milieu), extension of clay and mixed-layer clay-chlorite-zeolite mineral synthesis in low-temperature-pressure laboratory experiment, and for the investigation of the behaviour of these synthetic products at metamorphic temperatures and pressures.


1976 ◽  
Vol 13 (3) ◽  
pp. 405-421 ◽  
Author(s):  
Lee C. Pigage

Pelitic metasediments immediately southwest of Yale, British Columbia contain mineral assemblages characteristic of staurolite through sillimanite zones of the Barrovian facies series. Microprobe analyses of major constituent phases in the pelites are combined with linear regression techniques to formulate probable kyanite- and sillimanite-forming reactions.A zone some 3 km wide contains the assemblage staurolite–kyanite–garnet–biotite–muscovite–quartz–plagioclase-ilmenite-rutile, which is univariant in AFM projection. Within precision limits of microprobe analysis, this assemblage is also univariant using linear regression techniques. Univariant relations are possible if [Formula: see text] with the composition of the fluid phase being buffered by the progressing reaction. This assemblage emphasizes the need for precise analyses when using the regression method, since minor components are often within permissible error limits rather than being balanced.Pelitic and calc-silicate assemblages from the metasediments restrict estimates of pressure–temperature conditions during regional metamorphism to 6–8 kbar and 550–770 °C. Pseudomorphs after andalusite indicate that contact metamorphism preceded regional upgrading of the pelites.


Geology ◽  
2021 ◽  
Author(s):  
Elliot K. Foley ◽  
R.A. Henderson ◽  
E.M. Roberts ◽  
A.I.S. Kemp ◽  
C.N. Todd ◽  
...  

The tectonic setting of the Australian sector of the eastern Gondwanan margin during the Jurassic and Cretaceous is enigmatic. Whether this involved convergent tectonism and a long-lived continental magmatic arc or rift-related extension unrelated to subduction is debated. The paucity of Australian Jurassic–Cretaceous igneous outcrops makes resolving these competing models difficult. We used the detrital zircon record of the Jurassic–Cretaceous Great Australian Superbasin (GAS) as a proxy for igneous activity. We attribute the persistent magmatism recorded in GAS sedimentary fill throughout the Mesozoic to ca. 95 Ma to continuation of the established Paleozoic continental arc system. The detrital zircon record signals short (~10 m.y.) pulses of elevated Jurassic and Cretaceous magmatic activity and strongly positive εHf values, indicating juvenile crust or mantle-derived magmatism. Margin reconstruction indicates sustained continental growth at rates of at least ~55 km3 km–1 m.y.–1, mainly to the tract now represented by submerged northern Zealandia, due to the retreat of this arc system. We posit that arc retreat was a key factor in rapid crust generation and preservation, and that continental sedimentary systems globally may host cryptic records of juvenile crustal addition that must be considered in estimating crustal growth rates along convergent plate margins.


1962 ◽  
Vol S7-IV (4) ◽  
pp. 477-491
Author(s):  
Andre Michard

Abstract A Permo-Carboniferous series and a polymetamorphic series are distinguished in the rocks of the southern Cottian Alps, Italy. The metamorphic mineral assemblages and facies of the principal rock types represented in each series and their zonal distribution are discussed. Alpine metamorphism is considered to have occurred after the tectonic activity responsible for superposition of the three structural units recognized in the region between Varaita and Stura.


2015 ◽  
Vol 45 (3) ◽  
pp. 431-451 ◽  
Author(s):  
Letícia Alexandre Redes ◽  
Maria Zélia Aguiar de Sousa ◽  
Amarildo Salina Ruiz ◽  
Jean-Michel Lafon

The Taquaral Granite is located on southern Amazon Craton in the region of Corumbá, westernmost part of the Brazilian state of Mato Grosso do Sul (MS), near Brazil-Bolivia frontier. This intrusion of batholitic dimensions is partially covered by sedimentary rocks of the Urucum, Tamengo Bocaina and Pantanal formations and Alluvial Deposits. The rock types are classified as quartz-monzodiorites, granodiorites, quartz-monzonites, monzo and syenogranites. There are two groups of enclaves genetically and compositionally different: one corresponds to mafic xenoliths and the second is identified as felsic microgranular enclave. Two deformation phases are observed: one ductile (F1) and the other brittle (F2). Geochemical data indicate intermediate to acidic composition for these rocks and a medium to high-K, metaluminous to peraluminous calk-alkaline magmatism, suggesting also their emplacement into magmatic arc settings. SHRIMP zircon U-Pb geochronological data of these granites reveals a crystallization age of 1861 ± 5.3 Ma. Whole rock Sm-Nd analyses provided εNd(1,86 Ga) values of -1.48 and -1.28 and TDM model ages of 2.32 and 2.25 Ga, likely indicating a Ryacian crustal source. Here we conclude that Taquaral Granite represents a magmatic episode generated at the end of the Orosirian, as a part of the Amoguija Magmatic Arc.


Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 505 ◽  
Author(s):  
Guoqiang Sun ◽  
Meng Wang ◽  
Jiajia Guo ◽  
Yetong Wang ◽  
Yongheng Yang

The average thickness of Paleogene sandstones reaches about 3000–4000 m at the northern margin of the Qaidam Basin. However, the provenance and sedimentary environment of these sandstones are uncertain; thus, more comprehensive research is needed. Integrated research is conducted on the provenance and weathering process based on petrographic characteristics, clay minerals, and geochemical compositions of sandstones in the center of the northern Qaidam Basin. The results of lithofacies analysis show that the Paleogene sandstones were mainly derived from an active continental magmatic arc, subduction accretion, or a fold-thrust belt. The average illite content in the Paleogene clay minerals is more than 50%, followed by chlorite and smectite, which reflect climatic and environmental characteristics that were arid to semi-arid, whereas the characteristics of carbon–oxygen isotopes reveal a mainly freshwater sedimentary environment. The corrected chemical index of alteration (CIAcorr) is between 56.3 and 75.7, with an average value of 66.5. These results indicate that the provenance of the Paleogene sandstones in the center of the northern Qaidam Basin mainly formed under cold and dry climatic conditions and experienced limited chemical weathering with a small amount that underwent intermediate chemical weathering under warm and humid conditions.


Sign in / Sign up

Export Citation Format

Share Document