Fabrication limits of electron beam lithography and of UV, X -ray and ion-beam lithographies

The paper discusses and compares the lithography methods being developed for the fabrication of future generations of silicon integrated circuits. The smallest features in today’s circuits are about 0.3 μm in size and this will be reduced to 0.1 μm within the next ten years. The methods discussed include optical (ultraviolet light) projection, which is used predominantly at present, projection printing at wavelengths between the X-ray and ultraviolet regions, X-ray proximity printing, and scanning and projection with electrons and ions. There are severe problems to be overcome with all of the methods before they can satisfy future needs. The difficulties are not just connected with obtaining adequate resolution. The more challenging requirements are those associated with the elimination of distortion in the highly complex trillion pixel images and of achieving an exposure rate of about one per second with a system of acceptable cost, that is less than about $10M. The various approaches for correcting distortion and obtaining adequate throughput are described, as are the factors limiting resolution. Finally, the ultimate capabilities of electron beam methods for fabricating structures and devices with dimensions down to 1 nm are described.

2005 ◽  
Vol 19 (09n10) ◽  
pp. 405-424 ◽  
Author(s):  
MICHIO WATANABE

Researches on the fabrication of ~ 0.1 × 0.1 μ m 2 superconductor–insulator–superconductor (SIS) Josephson junctions are reviewed. Today, a typical dimension is 1–10 μm for Josephson junctions in superconducting integrated circuits. These Josephson junctions are defined by well-established photolithographic technology with reactive ion etching (RIE), and for the superconductor, Nb is almost always used. The merits of Nb include the facts that the superconducting transition temperature Tc of Nb (9.2 K ) is higher than the boiling point of He (4.2 K ), and that Nb has excellent stability against thermal cycling between room temperature and liquid- He temperature. For the fabrication of ~ 0.1 × 0.1 μ m 2 junctions, on the other hand, there is a standard process with electron-beam lithography, shadow evaporation, and lift-off. This process works well for Al (Tc = 1.2 K ), however, it is not ideal for Nb . The scope of this brief review is the nanoscale junction with Nb electrodes. We will look at the efforts of optimizing the standard lift-off process for Nb , electron-beam-lithographic versions of the Nb Josephson-junction technology, focused-ion-beam (FIB) etching as a convenient alternative to electron-beam lithography and RIE, etc. In order to characterize nanoscale tunnel junctions, the single-charge transistor has been often fabricated. Therefore, a summary of its theoretical transport properties is also included.


Author(s):  
A.J. Tousimis

An integral and of prime importance of any microtopography and microanalysis instrument system is its electron, x-ray and ion detector(s). The resolution and sensitivity of the electron microscope (TEM, SEM, STEM) and microanalyzers (SIMS and electron probe x-ray microanalyzers) are closely related to those of the sensing and recording devices incorporated with them.Table I lists characteristic sensitivities, minimum surface area and depth analyzed by various methods. Smaller ion, electron and x-ray beam diameters than those listed, are possible with currently available electromagnetic or electrostatic columns. Therefore, improvements in sensitivity and spatial/depth resolution of microanalysis will follow that of the detectors. In most of these methods, the sample surface is subjected to a stationary, line or raster scanning photon, electron or ion beam. The resultant radiation: photons (low energy) or high energy (x-rays), electrons and ions are detected and analyzed.


2016 ◽  
Author(s):  
Dakui Lin ◽  
Huoyao Chen ◽  
Stefanie Kroker ◽  
Thomas Käsebier ◽  
Zhengkun Liu ◽  
...  

2002 ◽  
Vol 41 (Part 1, No. 6B) ◽  
pp. 4122-4126
Author(s):  
Eric Lavallée ◽  
Jacques Beauvais ◽  
Dominique Drouin ◽  
Mélanie Cloutier ◽  
Pan Yang ◽  
...  

2000 ◽  
Vol 636 ◽  
Author(s):  
Kenneth E. Gonsalves ◽  
Hengpeng Wu ◽  
Yongqi Hu ◽  
Lhadi Merhari

AbstractThe SIA roadmap predicts mass production of sub-100 nm resolution circuits by 2006. This not only imposes major constraints on next generation lithographic tools but also requires that new resists capable of accommodating such a high resolution be synthesized and developed concurrently. Except for ion beam lithography, DUV, X-ray, and in particular electron beam lithography suffer significantly from proximity effects, leading to severe degradation of resolution in classical resists. We report a new class of resists based on organic/inorganic nanocomposites having a structure that reduces the proximity effects. Synthetic routes are described for a ZEP520®nano-SiO2 resist where 47nm wide lines have been written with a 40 nm diameter, 20 keV electron beam at no sensitivity cost. Other resist systems based on polyhedral oligosilsesquioxane copolymerized with MMA, TBMA, MMA and a proprietary PAG are also presented. These nanocomposite resists suitable for DUV and electron beam lithography show enhancement in both contrast and RIE resistance in oxygen. Tentative mechanisms responsible for proximity effect reduction are also discussed.


Sign in / Sign up

Export Citation Format

Share Document