Multi-branching flows from one mother tube to many daughters or to a network

Author(s):  
R.I Bowles ◽  
S.C.R Dennis ◽  
R Purvis ◽  
F.T Smith

Multiply branching fluid flows are modelled in two contexts. The first (type I) is for one-to-many branching. Computations are described for flow through a channel, with fully developed motion upstream, which branches abruptly into a number of subchannels downstream. The differences in pressure between the upstream end of the channel and the downstream ends of the subchannels are substantial. Comparisons with recent analytical predictions show fair agreement for Reynolds numbers in the low tens and above. The second context (type II) has successive generations of bifurcation in a network. Modelling, computations and analysis include the effects of many bifurcations.

Author(s):  
Ramanuj Kumar ◽  
◽  
Anish Pandey ◽  
Amlana Panda ◽  
Rajshree Mallick ◽  
...  

Nowadays hard turning is noticed to be the most dominating machining activity especially for difficult to cut metallic alloys. Attributes of dry hard turning are highly influenced by the amount of heat generation during cutting. Some major challenges are rapid tool wear, lower tool-life span, and poor surface finish but simultaneously generated heat is enough to provide thermal softening of hard work material and facilitates easier shear deformation thus easy cutting. Also, plenty of works reported the utilization of various cooling methods as well as coolants which successfully retard the intensity of cutting heat but this leads to additional cost as well as environmental and health issues. However, still, there is scope to select proper cutting tool materials, its geometry, and appropriate values of cutting parameters to get favorable machining outcomes under dry hard turning and avoid the cooling cost, environmental, and health issue. Considering these challenges, current work utilizes PVD-coated (TiAlN) carbide insert in dry hard turning of AISI D2 steel. The multi-responses like tool-flank wear, chip morphology, and chip reduction coefficient are considered. The amalgamation of input processing variables must be optimum for the effectual performance of hard to process materials turning. Generally, the Fuzzy logic hypothesis represents the uncertainties co-related with fuzziness, and deficiency in the data concerned with the problem. Further, to achieve the best combination of input cutting terms, grey-fuzzy hybrid optimization (Type I and Type II) is utilized considering the Gaussian membership function. Type II grey-fuzzy system attributed to 15 % less error (between GRG and GFG) compared to Type I. Hence, Type II grey-fuzzy system is utilized to get the optimal set of input terms. The optimal combination of input terms is found as t-1 (0.15 mm), s-4 (0.25 mm/rev) and is Vc-2 (100 m/min) which is comparable to the results obtained under spray impingement cooling using CVD tool in the literature. However, hard turning can be assessed under the dry condition with a PVD tool at the obtained optimal input condition for industrial uses. Further, six different types of cascade-forward-back propagation neural network modelling is accomplished. Among all models, CFBNN-4 model exhibited the best prediction results with a mean absolute error of 2.278% for flank wear (VBc) and 0.112% for the chip reduction coefficient (CRC). However, this model can be recommended for other engineering modelling problems. The outcomes of this research may be of immense importance to the tool manufacturers and machining industry.


2020 ◽  
Author(s):  
Qüan’an Hu ◽  
Jérôme Ailhas ◽  
Todd Blevins ◽  
Ulrich Klahre ◽  
Franck Vazquez ◽  
...  

AbstractEpigenetic states and even certain environmental responses in nematodes, mammals and seed plants can be inherited over successive generations. RNAi in plants is an epigenetic form of RNA degradation that is normally reset early in development. In contrast, competence, i.e., the susceptibility of a transgene for RNAi, is believed to be genetically determined and faithfully transmitted over many generations. Unexpectedly, we found that the same yellow fluorescent protein (YFP) transgene in a monogenic, homozygous line of Arabidopsis exhibited two epigenetic states of RNAi: type I, which is initiated in rosette leaves and is stable in later developmental stages, and, type II, which is initiated after floral induction and is unstable. The incidence of type I plants descended from type I parents decreased over three successive generations of self-fertilized plants. By the third generation, a substantial fraction of plants from type I parents exhibited either the type II phenotype or remained high-YFP expressing throughout sporophytic development, indicating that silencing had been completely lost. Similarly, plants descended from type II parents showed a progressive shift from the type II phenotype and a complete loss of silencing. These results show that the silencing types (or states) of parental plants have significant influence on both silencing determination and silencing types (or states) of their offspring, however, this influence fades through several generations of self; as regardless of the types of the parental lines, competence for RNA silencing tends to loss after generations. Thus, we propose that RNA silencing in plants can be the target of transgenerational effects.While the underlying mechanisms are still unknown, our findings in the Arabidopsis RNA silencing system complement the current understanding of heritable RNAi in C. elegans, that this phenomenon is likely a common mechanism in Eukaryote systems.


Author(s):  
Ronald S. Weinstein ◽  
N. Scott McNutt

The Type I simple cold block device was described by Bullivant and Ames in 1966 and represented the product of the first successful effort to simplify the equipment required to do sophisticated freeze-cleave techniques. Bullivant, Weinstein and Someda described the Type II device which is a modification of the Type I device and was developed as a collaborative effort at the Massachusetts General Hospital and the University of Auckland, New Zealand. The modifications reduced specimen contamination and provided controlled specimen warming for heat-etching of fracture faces. We have now tested the Mass. General Hospital version of the Type II device (called the “Type II-MGH device”) on a wide variety of biological specimens and have established temperature and pressure curves for routine heat-etching with the device.


Author(s):  
G. D. Gagne ◽  
M. F. Miller ◽  
D. A. Peterson

Experimental infection of chimpanzees with non-A, non-B hepatitis (NANB) or with delta agent hepatitis results in the appearance of characteristic cytoplasmic alterations in the hepatocytes. These alterations include spongelike inclusions (Type I), attached convoluted membranes (Type II), tubular structures (Type III), and microtubular aggregates (Type IV) (Fig. 1). Type I, II and III structures are, by association, believed to be derived from endoplasmic reticulum and may be morphogenetically related. Type IV structures are generally observed free in the cytoplasm but sometimes in the vicinity of type III structures. It is not known whether these structures are somehow involved in the replication and/or assembly of the putative NANB virus or whether they are simply nonspecific responses to cellular injury. When treated with uranyl acetate, type I, II and III structures stain intensely as if they might contain nucleic acids. If these structures do correspond to intermediates in the replication of a virus, one might expect them to contain DNA or RNA and the present study was undertaken to explore this possibility.


Author(s):  
T.A. Fassel ◽  
M.J. Schaller ◽  
M.E. Lidstrom ◽  
C.C. Remsen

Methylotrophic bacteria play an Important role in the environment in the oxidation of methane and methanol. Extensive intracytoplasmic membranes (ICM) have been associated with the oxidation processes in methylotrophs and chemolithotrophic bacteria. Classification on the basis of ICM arrangement distinguishes 2 types of methylotrophs. Bundles or vesicular stacks of ICM located away from the cytoplasmic membrane and extending into the cytoplasm are present in Type I methylotrophs. In Type II methylotrophs, the ICM form pairs of peripheral membranes located parallel to the cytoplasmic membrane. Complex cell wall structures of tightly packed cup-shaped subunits have been described in strains of marine and freshwater phototrophic sulfur bacteria and several strains of methane oxidizing bacteria. We examined the ultrastructure of the methylotrophs with particular view of the ICM and surface structural features, between representatives of the Type I Methylomonas albus (BG8), and Type II Methylosinus trichosporium (OB-36).


1987 ◽  
Vol 48 (C5) ◽  
pp. C5-525-C5-528 ◽  
Author(s):  
K. J. MOORE ◽  
P. DAWSON ◽  
C. T. FOXON
Keyword(s):  
Type I ◽  
Type Ii ◽  

2020 ◽  
pp. 37-55 ◽  
Author(s):  
A. E. Shastitko ◽  
O. A. Markova

Digital transformation has led to changes in business models of traditional players in the existing markets. What is more, new entrants and new markets appeared, in particular platforms and multisided markets. The emergence and rapid development of platforms are caused primarily by the existence of so called indirect network externalities. Regarding to this, a question arises of whether the existing instruments of competition law enforcement and market analysis are still relevant when analyzing markets with digital platforms? This paper aims at discussing advantages and disadvantages of using various tools to define markets with platforms. In particular, we define the features of the SSNIP test when being applyed to markets with platforms. Furthermore, we analyze adjustment in tests for platform market definition in terms of possible type I and type II errors. All in all, it turns out that to reduce the likelihood of type I and type II errors while applying market definition technique to markets with platforms one should consider the type of platform analyzed: transaction platforms without pass-through and non-transaction matching platforms should be tackled as players in a multisided market, whereas non-transaction platforms should be analyzed as players in several interrelated markets. However, if the platform is allowed to adjust prices, there emerges additional challenge that the regulator and companies may manipulate the results of SSNIP test by applying different models of competition.


2015 ◽  
Vol 24 (4) ◽  
pp. 523-526 ◽  
Author(s):  
Yoshihiro Maruo ◽  
Mahdiyeh Behnam ◽  
Shinichi Ikushiro ◽  
Sayuri Nakahara ◽  
Narges Nouri ◽  
...  

Background: Crigler–Najjar syndrome type I (CN-1) and type II (CN-2) are rare hereditary unconjugated hyperbilirubinemia disorders. However, there have been no reports regarding the co-existence of CN-1 and CN-2 in one family. We experienced a case of an Iranian family that included members with either CN-1 or CN-2. Genetic analysis revealed a mutation in the bilirubin UDP-glucuronosyltransferase (UGT1A1) gene that resulted in residual enzymatic activity.Case report: The female proband developed severe hyperbilirubinemia [total serum bilirubin concentration (TB) = 34.8 mg/dL] with bilirubin encephalopathy (kernicterus) and died after liver transplantation. Her family history included a cousin with kernicterus (TB = 30.0 mg/dL) diagnosed as CN-1. Her great grandfather (TB unknown) and uncle (TB = 23.0 mg/dL) developed jaundice, but without any treatment, they remained healthy as CN-2. Results: The affected cousin was homozygous for a novel frameshift mutation (c.381insGG, p.C127WfsX23). The affected uncle was compound heterozygous for p.C127WfsX23 and p.V225G linked with A(TA)7TAA. p.V225G-UGT1A1 reduced glucuronidation activity to 60% of wild-type. Thus, linkage of A(TA)7TAA and p.V225G might reduce UGT1A1 activity to 18%–36 % of the wild-type. Conclusion: Genetic and in vitro expression analyses are useful for accurate genetic counseling for a family with a history of both CN-1 and CN-2. Abbreviations: CN-1: Crigler–Najjar syndrome type I; CN-2: Crigler–Najjar syndrome type II; GS: Gilbert syndrome; UGT1A1: bilirubin UDP-glucuronosyltransferase; WT: Wild type; TB: total serum bilirubin.


Sign in / Sign up

Export Citation Format

Share Document