scholarly journals Gamma-ray burst jet dynamics and their interaction with the progenitor star

Author(s):  
Davide Lazzati ◽  
Brian J Morsony ◽  
Mitchell C Begelman

The association of at least some long gamma-ray bursts with type Ic supernova explosions has been established beyond reasonable doubt. Theoretically, the challenge is to explain the presence of a light hyper-relativistic flow propagating through a massive stellar core without losing those properties. We discuss the role of the jet–star interaction in shaping the properties of the outflow emerging on the surface of the star. We show that the nature of the inner engine is hidden from the observer for most of the evolution, well beyond the time of the jet breakout on the stellar surface. The discussion is based on analytical considerations as well as high resolution numerical simulations. Finally, the observational consequences of the scenario are addressed in light of the present capabilities.

2005 ◽  
Vol 192 ◽  
pp. 417-423
Author(s):  
A.I. MacFadyen

SummaryLong duration gamma-ray bursts are associated with the death of massive stars as earlier observations and theoretical arguments had suggested. Supernova 2003dh observed with GRB030329 confirms this picture. Current progress in developing numerical special relativistic hydrodynamics codes with adaptive mesh refinement is allowing for high-resolution simulations of relativistic flow relevant for simulations of GRBs.


Author(s):  
A. Kumar ◽  
S. B. Pandey ◽  
R. Gupta ◽  
A. Aryan ◽  
A. J. Castro-Tirado ◽  
...  

Newly installed 3.6m DOT at Nainital (Uttarakhand) is a novel facility for the time domain astronomy. Because of the longitudinal advantage of India, it could be used to study new transients reported by a global network of robotic telescopes. Observations with the 4K × 4K CCD Imager at the axial port of the 3.6m DOT will be very helpful in the near future towards understanding the different physical aspects of time-critical events, e.g., Gamma-ray bursts (GRBs), Supernovae, Gravitational wave candidates, etc. Using the Imager with broadband filters (Bessel UBVRI and SDSS ugriz), ~6.5' × 6.5' images could be obtained to attempt various science goals in synergy with other multi-band facilities. In this study, we present an analysis of unpublished R-band data of GRB 171205A/SN 2017iuk spanning between ~12 to 105 days since burst, that observed using the 3.6m DOT with 4K × 4K CCD Imager. In the R-band light curve, a bump appears to start from ~3 days, which shows the peak at ~15 days after the burst, clearly indicates photometric evidence of association of SN with GRB 171205A.


2011 ◽  
Vol 7 (S279) ◽  
pp. 367-368
Author(s):  
Ken'ichiro Nakazato ◽  
Kohsuke Sumiyoshi

AbstractSome supernovae and gamma-ray bursts are thought to accompany a black hole formation. In the process of a black hole formation, a central core becomes hot and dense enough for hyperons and quarks to appear. In this study, we perform neutrino-radiation hydrodynamical simulations of a stellar core collapse and black hole formation taking into account such exotic components. In our computation, general relativity is fully considered under spherical symmetry. As a result, we find that the additional degrees of freedom soften the equation of state of matter and promote the black hole formation. Furthermore, their effects are detectable as a neutrino signal. We believe that the properties of hot and dense matter at extreme conditions are essential for the studies on the astrophysical black hole formation. This study will be hopefully a first step toward a physics of the central engine of gamma-ray bursts.


2000 ◽  
Vol 543 (1) ◽  
pp. 77-89 ◽  
Author(s):  
P. Kurczynski ◽  
D. Palmer ◽  
H. Seifert ◽  
B. J. Teegarden ◽  
N. Gehrels ◽  
...  

2008 ◽  
Vol 4 (S252) ◽  
pp. 271-281 ◽  
Author(s):  
Jorick S. Vink

AbstractWe discuss the role of mass loss for the evolution of the most massive stars, highlighting the role of the predicted bi-stability jump that might be relevant for the evolution of rotational velocities during or just after the main sequence. This mechanism is also proposed as an explanation for the mass-loss variations seen in the winds from Luminous Blue Variables (LBVs). These might be relevant for the quasi-sinusoidal modulations seen in a number of recent transitional supernovae (SNe), as well as for the double-throughed absorption profile recently discovered in the Hα line of SN 2005gj. Finally, we discuss the role of metallicity via the Z-dependent character of their winds, during both the initial and final (Wolf-Rayet) phases of evolution, with implications for the angular momentum evolution of the progenitor stars of long gamma-ray bursts (GRBs).


2015 ◽  
Vol 11 (A29B) ◽  
pp. 243-243
Author(s):  
P. O'Brien ◽  
P. Jonker

AbstractAthena is the second large mission selected in the ESA Cosmic Vision plan. With its large collecting area, high spectral-energy resolution (X-IFU instrument) and impressive grasp (WFI instrument), Athena will truly revolutionise X-ray astronomy. The most prodigious sources of high-energy photons are often transitory in nature. Athena will provide the sensitivity and spectral resolution coupled with rapid response to enable the study of the dynamic sky. Potential sources include: distant Gamma-Ray Bursts to probe the reionisation epoch and find missing baryons in the cosmic web; tidal disruption events to reveal dormant supermassive and intermediate-mass black holes; and supernova explosions to understand progenitors and their environments. We illustrate Athenas capabilities and show how it will be able to constrain the nature of explosive transients including gas metallicity and dynamics.


2011 ◽  
Vol 7 (S279) ◽  
pp. 369-370
Author(s):  
Yuu Niino

AbstractSome theoretical studies on the origin of long gamma-ray bursts (GRBs) using stellar evolution models suggest that a low metallicity environment may be a necessary condition for a GRB to occur. However, recent discoveries of high-metallicity host galaxies of some GRBs cast doubt on the requirement of low-metallicity in GRB occurrence. In this study, we predict the metallicity distribution of GRB host galaxies, assuming empirical formulations of galaxy properties. We take internal dispersion of metallicity within each galaxy into account. Assuming GRBs trace low-metallicity star formation 12+log(O/H) < 8.2, we find that ≳ 10% of GRB host galaxies may have Z > Z⊙, depending on the internal dispersion of metallicity within galaxies.


2012 ◽  
Vol 12 ◽  
pp. 385-389
Author(s):  
B. PATRICELLI ◽  
M.G. BERNARDINI ◽  
C.L. BIANCO ◽  
L. CAITO ◽  
G. DE BARROS ◽  
...  

The analysis of various Gamma Ray Bursts (GRBs) characterized by an isotropic energy Eiso ≲ 1053 ergs within the fireshell model has shown how that the observed N(E) spectrum of their prompt emission can be reproduced in a satisfactory way by assuming a thermal spectrum in the comoving frame of the fireshell. Nevertheless, from the study of higher energetic bursts (Eiso ≳ 1054 ergs ) such as, for example, GRB 080319B, some discrepancies between the numerical simulations and the observational data have been observed. We investigate a different spectrum of photons in the comoving frame of the fireshell in order to better reproduce the spectral properties of GRB prompt emission within the fireshell model. We introduce a phenomenologically modified comoving thermal spectrum: a spectrum characterized by a different asymptotic low energy slope with respect to the thermal one. We test this spectrum by comparing the numerical simulations with the observed prompt emission spectra of various GRBs; we present, as an exaple, the case of GRB 080319B.


Sign in / Sign up

Export Citation Format

Share Document