scholarly journals Effects of light-activated diazido-Pt IV complexes on cancer cells in vitro

Author(s):  
Patrick J. Bednarski ◽  
Katharina Korpis ◽  
Aron F. Westendorf ◽  
Steffi Perfahl ◽  
Renate Grünert

Various Pt IV diazides have been investigated over the years as light-activatable prodrugs that interfere with cell proliferation, accumulate in cancer cells and cause cell death. The potencies of the complexes vary depending on the substituted amines (pyridine=piperidine>ammine) as well as the coordination geometry ( trans diazide> cis ). Light-activated Pt IV diazides tend to be less specific than cisplatin at inhibiting cancer cell growth, but cells resistant to cisplatin show little cross-resistance to Pt IV diazides. Platinum is accumulated in the cancer cells to a similar level as cisplatin, but only when activated by light, indicating that reactive Pt species form photolytically. Studies show that Pt also becomes attached to cellular DNA upon the light activation of various Pt IV diazides. Structures of some of the photolysis products were elucidated by LC–MS/MS; monoaqua- and diaqua-Pt II complexes form that are reactive towards biomolecules such as calf thymus DNA. Platination of calf thymus DNA can be blocked by the addition of nucleophiles such as glutathione and chloride, further evidence that aqua-Pt II species form upon irradiation. Evidence is presented that reactive oxygen species may be generated in the first hours following photoactivation. Cell death does not take the usual apoptotic pathways seen with cisplatin, but appears to involve autophagy. Thus, photoactivated diazido-Pt IV complexes represent an interesting class of potential anti-cancer agents that can be selectively activated by light and kill cells by a mechanism different to the anti-cancer drug cisplatin.

MAPAN ◽  
2016 ◽  
Vol 31 (3) ◽  
pp. 169-175 ◽  
Author(s):  
Deepti Chadha ◽  
Shweta Agarwal ◽  
Ranjana Mehrotra

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2903 ◽  
Author(s):  
Yong Zhang ◽  
Jingjing Xu ◽  
Yuezhou Yu ◽  
Wenhao Shang ◽  
Anpei Ye

A novel anti-cancer drug sensitivity testing (DST) approach was developed based on in vitro single-cell Raman spectrum intensity (RSI). Generally, the intensity of Raman spectra (RS) for a single living cell treated with drugs positively relates to the sensitivity of the cells to the drugs. In this study, five cancer cell lines (BGC 823, SGC 7901, MGC 803, AGS, and NCI-N87) were exposed to three cytotoxic compounds or to combinations of these compounds, and then they were evaluated for their responses with RSI. The results of RSI were consistent with conventional DST methods. The parametric correlation coefficient for the RSI and Methylthiazolyl tetrazolium assay (MTT) was 0.8558 ± 0.0850, and the coefficient of determination was calculated as R2 = 0.9529 ± 0.0355 for fitting the dose–response curve. Moreover, RSI data for NCI-N87 cells treated by trastuzumab, everolimus (cytostatic), and these drugs in combination demonstrated that the RSI method was suitable for testing the sensitivity of cytostatic drugs. Furthermore, a heterogeneity coefficient H was introduced for quantitative characterization of the heterogeneity of cancer cells treated by drugs. The largest possible variance between RSs of cancer cells were quantitatively obtained using eigenvalues of principal component analysis (PCA). The ratio of H between resistant cells and sensitive cells was greater than 1.5, which suggested the H-value was effective to describe the heterogeneity of cancer cells. Briefly, the RSI method might be a powerful tool for simple and rapid detection of the sensitivity of tumor cells to anti-cancer drugs and the heterogeneity of their responses to these drugs.


2017 ◽  
Vol 5 (3) ◽  
pp. 532-550 ◽  
Author(s):  
Muhammad Gulfam ◽  
Teresa Matini ◽  
Patrícia F. Monteiro ◽  
Raphaël Riva ◽  
Hilary Collins ◽  
...  

PEG-poly(caprolactone) co-polymers with disulfide-linked cores are highly efficient for delivery of the anti-cancer drug methotrexate in vitro.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Victoria D. Turubanova ◽  
Tatiana A. Mishchenko ◽  
Irina V. Balalaeva ◽  
Iuliia Efimova ◽  
Nina N. Peskova ◽  
...  

AbstractThe immunogenicity of dying cancer cells determines the efficacy of anti-cancer therapy. Photodynamic therapy (PDT) can induce immunogenic cell death (ICD), which is characterized by the emission of damage-associated molecular patterns (DAMPs) from dying cells. This emission can trigger effective anti-tumor immunity. Only a few photosensitizers are known to induce ICD and, therefore, there is a need for development of new photosensitizers that can induce ICD. The purpose of this work was to analyze whether photosensitizers developed in-house from porphyrazines (pz I and pz III) can induce ICD in vitro and in vivo when used in PDT. We indetified the optimal concentrations of the photosensitizers and found that, at a light dose of 20 J/cm2 (λex 615–635 nm), both pz I and pz III efficiently induced cell death in cancer cells. We demonstrate that pz I localized predominantly in the Golgi apparatus and lysosomes while pz III in the endoplasmic reticulum and lysosomes. The cell death induced by pz I-PDT was inhibited by zVAD-fmk (apoptosis inhibitor) but not by ferrostatin-1 and DFO (ferroptosis inhibitors) or by necrostatin-1 s (necroptosis inhibitor). By contrast, the cell death induced by pz III-PDT was inhibited by z-VAD-fmk and by the necroptosis inhibitor, necrostatin-1 s. Cancer cells induced by pz I-PDT or pz III-PDT released HMGB1 and ATP and were engulfed by bone marrow-derived dendritic cells, which then matured and became activated in vitro. We demonstrate that cancer cells, after induction of cell death by pz I-PDT or pz III-PDT, are protective when used in the mouse model of prophylactic tumor vaccination. By vaccinating immunodeficient mice, we prove the role of the adaptive immune system in protecting against tumours. All together, we have shown that two novel porphyrazines developed in-house are potent ICD inducers that could be effectively applied in PDT of cancer.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 10
Author(s):  
Carla S. S. Teixeira ◽  
Sérgio F. Sousa

Fighting cancer is one of the major challenges of the 21st century. Among recently proposed treatments, molecular-targeted therapies are attracting particular attention. The potential targets of such therapies include a group of enzymes that possess the capability to catalyze at least two different reactions, so-called multifunctional enzymes. The features of such enzymes can be used to good advantage in the development of potent selective inhibitors. This review discusses the potential of multifunctional enzymes as anti-cancer drug targets along with the current status of research into four enzymes which by their inhibition have already demonstrated promising anti-cancer effects in vivo, in vitro, or both. These are PFK-2/FBPase-2 (involved in glucose homeostasis), ATIC (involved in purine biosynthesis), LTA4H (involved in the inflammation process) and Jmjd6 (involved in histone and non-histone posttranslational modifications). Currently, only LTA4H and PFK-2/FBPase-2 have inhibitors in active clinical development. However, there are several studies proposing potential inhibitors targeting these four enzymes that, when used alone or in association with other drugs, may provide new alternatives for preventing cancer cell growth and proliferation and increasing the life expectancy of patients.


2021 ◽  
Vol 22 (5) ◽  
pp. 2408
Author(s):  
Bin Zhang ◽  
Jiamei Zou ◽  
Qiting Zhang ◽  
Ze Wang ◽  
Ning Wang ◽  
...  

Eukaryotic elongation factor 2 kinase (eEF2K or Ca2+/calmodulin-dependent protein kinase, CAMKIII) is a new member of an atypical α-kinase family different from conventional protein kinases that is now considered as a potential target for the treatment of cancer. This protein regulates the phosphorylation of eukaryotic elongation factor 2 (eEF2) to restrain activity and inhibit the elongation stage of protein synthesis. Mounting evidence shows that eEF2K regulates the cell cycle, autophagy, apoptosis, angiogenesis, invasion, and metastasis in several types of cancers. The expression of eEF2K promotes survival of cancer cells, and the level of this protein is increased in many cancer cells to adapt them to the microenvironment conditions including hypoxia, nutrient depletion, and acidosis. The physiological function of eEF2K and its role in the development and progression of cancer are here reviewed in detail. In addition, a summary of progress for in vitro eEF2K inhibitors from anti-cancer drug discovery research in recent years, along with their structure–activity relationships (SARs) and synthetic routes or natural sources, is also described. Special attention is given to those inhibitors that have been already validated in vivo, with the overall aim to provide reference context for the further development of new first-in-class anti-cancer drugs that target eEF2K.


The Analyst ◽  
2017 ◽  
Vol 142 (19) ◽  
pp. 3579-3587 ◽  
Author(s):  
Jacky Fong-Chuen Loo ◽  
Chengbin Yang ◽  
Hing Lun Tsang ◽  
Pui Man Lau ◽  
Ken-Tye Yong ◽  
...  

We have developed a next generation aptamer-based bio-barcode (ABC) assay to detect cytochrome-c (Cyto-c), a cell death marker released from cancer cells, for anti-cancer drug screening.


Theranostics ◽  
2018 ◽  
Vol 8 (19) ◽  
pp. 5259-5275 ◽  
Author(s):  
Yeonho Jo ◽  
Nakwon Choi ◽  
Kyobum Kim ◽  
Hyung-Jun Koo ◽  
Jonghoon Choi ◽  
...  

2015 ◽  
Vol 7 (24) ◽  
pp. 10162-10169 ◽  
Author(s):  
Qifei Li ◽  
Lifu Xiao ◽  
Sitaram Harihar ◽  
Danny R. Welch ◽  
Elizabeth Vargis ◽  
...  

Breast cancer cells with or without BRMS1 in response to doxorubicin (DOX).


2020 ◽  
Vol 11 (3) ◽  
pp. 10572-10584

Cancer therapy has been hindered by treatments lacking sensitivity, specificity, and affordability. The side effects of conventional chemotherapy enforce the need for a treatment strategy that would maximize the anti-cancer activity of the drug while minimizing its’ adverse effects on healthy cells. Nanoparticles (NPs) as carriers for anti-cancer drugs have attracted interest due to their favorable properties, which include the enhanced permeability and retention effect. Silver NPs (AgNPs) have been explored as nanocarriers owing to their good conductivity, chemical stability, and therapeutic potential. In this study, AgNPs were synthesized, functionalized with chitosan (CS), and loaded with the anti-cancer drug cisplatin (CIS). Successful conjugation, size distribution, and morphology of the NPs were assessed by UV-vis and Fourier transform infra-red (FTIR) spectroscopy, NP tracking analysis (NTA), and transmission electron microscopy (TEM). The encapsulated CIS (>80%) was efficiently and rapidly released from the nanocomplex at low pH, favoring delivery to a tumor micro-environment. Cytotoxicity profiles of the CS-AgNP-CIS nanocomplexes exhibited significant cell death in the human breast cancer cell lines, MCF-7 and SKBR-3. They were more effective than the free drug, exhibiting >50% cell death. Our results demonstrate a potentially efficient anti-cancer drug delivery system with selectivity to breast cancer cells.


Sign in / Sign up

Export Citation Format

Share Document