scholarly journals Multimodal Contrast Agents for Optoacoustic Brain Imaging in Small Animals

Author(s):  
Xue-feng Shi ◽  
Bin Ji ◽  
Yanyan Kong ◽  
Yihui Guan ◽  
Ruiqing Ni

Optoacoustic (photoacoustic) imaging has demonstrated versatile applications in biomedical research, visualizing the disease pathophysiology and monitoring the treatment effect in an animal model, as well as toward applications in the clinical setting. Given the complex disease mechanism, multimodal imaging provides important etiological insights with different molecular, structural, and functional readouts in vivo. Various multimodal optoacoustic molecular imaging approaches have been applied in preclinical brain imaging studies, including optoacoustic/fluorescence imaging, optoacoustic imaging/magnetic resonance imaging (MRI), optoacoustic imaging/MRI/Raman, optoacoustic imaging/positron emission tomography, and optoacoustic/computed tomography. There is a rapid development in molecular imaging contrast agents employing a multimodal imaging strategy for pathological targets involved in brain diseases. Many chemical dyes for optoacoustic imaging have fluorescence properties and have been applied in hybrid optoacoustic/fluorescence imaging. Nanoparticles are widely used as hybrid contrast agents for their capability to incorporate different imaging components, tunable spectrum, and photostability. In this review, we summarize contrast agents including chemical dyes and nanoparticles applied in multimodal optoacoustic brain imaging integrated with other modalities in small animals, and provide outlook for further research.

Author(s):  
Jonghoon Kim ◽  
Nohyun Lee ◽  
Taeghwan Hyeon

Molecular imaging enables us to non-invasively visualize cellular functions and biological processes in living subjects, allowing accurate diagnosis of diseases at early stages. For successful molecular imaging, a suitable contrast agent with high sensitivity is required. To date, various nanoparticles have been developed as contrast agents for medical imaging modalities. In comparison with conventional probes, nanoparticles offer several advantages, including controllable physical properties, facile surface modification and long circulation time. In addition, they can be integrated with various combinations for multimodal imaging and therapy. In this opinion piece, we highlight recent advances and future perspectives of nanomaterials for molecular imaging. This article is part of the themed issue ‘Challenges for chemistry in molecular imaging’.


2019 ◽  
Vol 25 (24) ◽  
pp. 2637-2649 ◽  
Author(s):  
Cheng-Tang Pan ◽  
Wei-Hsi Chang ◽  
Ajay Kumar ◽  
Satya P. Singh ◽  
Aman Chandra Kaushik ◽  
...  

Background: Multimodal imaging plays an important role in the diagnosis of brain disorders. Neurological disorders need to be diagnosed at an early stage for their effective treatment as later, it is very difficult to treat them. If possible, diagnosing at an early stage can be much helpful in curing the disease with less harm to the body. There is a need for advanced and multimodal imaging techniques for the same. This paper provides an overview of conventional as well as modern imaging techniques for brain diseases, specifically for tumor imaging. In this paper, different imaging modalities are discussed for tumor detection in the brain along with their advantages and disadvantages. Conjugation of two and more than two modalities provides more accurate information rather than a single modality. They can monitor and differentiate the cellular processes of normal and diseased condition with more clarity. The advent of molecular imaging, including reporter gene imaging, has opened the door of more advanced noninvasive detection of brain tumors. Due to specific optical properties, semiconducting polymer-based nanoparticles also play a pivotal role in imaging tumors. Objective: The objective of this paper is to review nanoparticles-mediated brain imaging and disease prognosis by conventional as well as modern modal imaging techniques. Conclusion: We reviewed in detail various medical imaging techniques. This paper covers recent developments in detail and elaborates a possible research aspect for the readers in the field.


Author(s):  
Yu Wang ◽  
Hailin Cong ◽  
Song Wang ◽  
Bing Yu ◽  
Youqing Shen

With the rapid development of molecular imaging, ultrasound (US) medicine has changed from traditional imaging diagnosis to integrated diagnosis and treatment at the molecular level. Ultrasound contrast agents (UCAs) play...


Nanoscale ◽  
2018 ◽  
Vol 10 (22) ◽  
pp. 10699-10704 ◽  
Author(s):  
Jiao-Jiao Ma ◽  
Ming-Xia Yu ◽  
Zheng Zhang ◽  
Wei-Guo Cai ◽  
Zhi-Ling Zhang ◽  
...  

Near-infrared (NIR) fluorescent quantum dots (QDs) are ideal platforms to fabricate multifunctional contrast agents for multimodal imaging.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2766 ◽  
Author(s):  
Matt Laramie ◽  
Mary Smith ◽  
Fahad Marmarchi ◽  
Lacey McNally ◽  
Maged Henary

Almost every variety of medical imaging technique relies heavily on exogenous contrast agents to generate high-resolution images of biological structures. Organic small molecule contrast agents, in particular, are well suited for biomedical imaging applications due to their favorable biocompatibility and amenability to structural modification. PET/SPECT, MRI, and fluorescence imaging all have a large host of small molecule contrast agents developed for them, and there exists an academic understanding of how these compounds can be developed. Optoacoustic imaging is a relatively newer imaging technique and, as such, lacks well-established small molecule contrast agents; many of the contrast agents used are the same ones which have found use in fluorescence imaging applications. Many commonly-used fluorescent dyes have found successful application in optoacoustic imaging, but others generate no detectable signal. Moreover, the structural features that either enable a molecule to generate a detectable optoacoustic signal or prevent it from doing so are poorly understood, so design of new contrast agents lacks direction. This review aims to compile the small molecule optoacoustic contrast agents that have been successfully employed in the literature to bridge the information gap between molecular design and optoacoustic signal generation. The information contained within will help to provide direction for the future synthesis of optoacoustic contrast agents.


2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Zhe Liu ◽  
Fabian Kiessling ◽  
Jessica Gätjens

The biomedical applications of nanoparticles in molecular imaging, drug delivery, and therapy give rise to the term “nanomedicine” and have led to ever-growing developments in the past decades. New generation of imaging probes (or contrast agents) and state of the art of various strategies for efficient multimodal molecular imaging have drawn much attention and led to successful preclinical uses. In this context, we intend to elucidate the fundamentals and review recent advances as well as to provide an outlook perspective in these fields.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 853
Author(s):  
Binita Shrestha ◽  
Lijun Wang ◽  
Eric M. Brey ◽  
Gabriela Romero Uribe ◽  
Liang Tang

Cancer is a heterogeneous and complex disease. Traditional cancer therapy is associated with low therapeutic index, acquired resistance, and various adverse effects. With the increasing understanding of cancer biology and technology advancements, more strategies have been exploited to optimize the therapeutic outcomes. The rapid development and application of nanomedicine have motivated this progress. Combinational regimen, for instance, has become an indispensable approach for effective cancer treatment, including the combination of chemotherapeutic agents, chemo-energy, chemo-gene, chemo-small molecules, and chemo-immunology. Additionally, smart nanoplatforms that respond to external stimuli (such as light, temperature, ultrasound, and magnetic field), and/or to internal stimuli (such as changes in pH, enzymes, hypoxia, and redox) have been extensively investigated to improve precision therapy. Smart nanoplatforms for combinational therapy have demonstrated the potential to be the next generation cancer treatment regimen. This review aims to highlight the recent advances in smart combinational therapy.


Sign in / Sign up

Export Citation Format

Share Document