scholarly journals Magnetoelectric multipoles in metals

Author(s):  
Florian Thöle ◽  
Nicola A. Spaldin

In this paper, we demonstrate computationally the existence of magnetoelectric multipoles, arising from the second-order term in the multipole expansion of a magnetization density in a magnetic field, in non-centrosymmetric magnetic metals. While magnetoelectric multipoles have long been discussed in the context of the magnetoelectric effect in non-centrosymmetric magnetic insulators , they have not previously been identified in metallic systems, in which the mobile carriers screen any electrical polarization. Using first-principles density functional calculations, we explore three specific systems: first, a conventional centrosymmetric magnetic metal, Fe, in which we break inversion symmetry by introducing a surface, which both generates magnetoelectric monopoles and allows a perpendicular magnetoelectric response. Next, the hypothetical cation-ordered perovskite, SrCaRu 2 O 6 , in which we study the interplay between the magnitude of the polar symmetry breaking and that of the magnetic dipoles and multipoles, finding that both scale proportionally to the structural distortion. Finally, we identify a hidden antiferromultipolar order in the non-centrosymmetric, antiferromagnetic metal Ca 3 Ru 2 O 7 , and show that, while its competing magnetic phases have similar magnetic dipolar structures, their magnetoelectric multipolar structures are distinctly different, reflecting the strong differences in transport properties. This article is part of the theme issue ‘Celebrating 125 years of Oliver Heaviside's ‘Electromagnetic Theory’’.

2018 ◽  
Vol 96 (1) ◽  
pp. 30-35
Author(s):  
Xiu-Juan Du ◽  
Zheng-Wei Zhang ◽  
Yu-Ling Song

Using first-principle calculations based on density functional theory, we investigate the strain and different edge terminations modulated electronic and magnetic properties of armchair AlN/SiC nanoribbons. The results show that the edge terminations Fe, Co, Cl can decrease or even eliminate the edge deformation of AlN/SiC nanoribbon. The magnetism of the nanoribbons is greatly adjusted by magnetic atoms Fe and Co, but not by Cl atoms. Apart from the nanoribbon with Cl terminations, the magnetism of the residual nanoribbons can be adjusted by increasing the compressed or stretched strain. The magnetic semiconductor nanoribbon with Co terminations becomes a magnetic half-metal system and then becomes a magnetic metal system, with the increase of the compressed strain. The magnetism of the nanoribbon with dangling bonds is attributed to the SiC edge and its nearest-neighbour C atoms, whereas the magnetism of the nanoribbon with Fe (or Co) terminations is mainly contributed by Fe (or Co) terminations.


2019 ◽  
Author(s):  
S. Giarrusso ◽  
Paola Gori-Giorgi

We analyze in depth two widely used definitions (from the theory of conditional probablity amplitudes and from the adiabatic connection formalism) of the exchange-correlation energy density and of the response potential of Kohn-Sham density functional theory. We introduce a local form of the coupling-constant-dependent Hohenberg-Kohn functional, showing that the difference between the two definitions is due to a corresponding local first-order term in the coupling constant, which disappears globally (when integrated over all space), but not locally. We also design an analytic representation for the response potential in the strong-coupling limit of density functional theory for a model single stretched bond.<br>


2017 ◽  
Author(s):  
Lyudmyla Adamska ◽  
Sridhar Sadasivam ◽  
Jonathan J. Foley ◽  
Pierre Darancet ◽  
Sahar Sharifzadeh

Two-dimensional boron is promising as a tunable monolayer metal for nano-optoelectronics. We study the optoelectronic properties of two likely allotropes of two-dimensional boron using first-principles density functional theory and many-body perturbation theory. We find that both systems are anisotropic metals, with strong energy- and thickness-dependent optical transparency and a weak (<1%) absorbance in the visible range. Additionally, using state-of-the-art methods for the description of the electron-phonon and electron-electron interactions, we show that the electrical conductivity is limited by electron-phonon interactions. Our results indicate that both structures are suitable as a transparent electrode.


2019 ◽  
Author(s):  
Henrik Pedersen ◽  
Björn Alling ◽  
Hans Högberg ◽  
Annop Ektarawong

Thin films of boron nitride (BN), particularly the sp<sup>2</sup>-hybridized polytypes hexagonal BN (h-BN) and rhombohedral BN (r-BN) are interesting for several electronic applications given band gaps in the UV. They are typically deposited close to thermal equilibrium by chemical vapor deposition (CVD) at temperatures and pressures in the regions 1400-1800 K and 1000-10000 Pa, respectively. In this letter, we use van der Waals corrected density functional theory and thermodynamic stability calculations to determine the stability of r-BN and compare it to that of h-BN as well as to cubic BN and wurtzitic BN. We find that r-BN is the stable sp<sup>2</sup>-hybridized phase at CVD conditions, while h-BN is metastable. Thus, our calculations suggest that thin films of h-BN must be deposited far from thermal equilibrium.


2019 ◽  
Author(s):  
Minho Kim ◽  
won june kim ◽  
Tim Gould ◽  
Eok Kyun Lee ◽  
Sébastien Lebègue ◽  
...  

<p>Materials design increasingly relies on first-principles calculations for screening important candidates and for understanding quantum mechanisms. Density functional theory (DFT) is by far the most popular first-principles approach due to its efficiency and accuracy. However, to accurately predict structures and thermodynamics, DFT must be paired with a van der Waals (vdW) dispersion correction. Therefore, such corrections have been the subject of intense scrutiny in recent years. Despite significant successes in organic molecules, no existing model can adequately cover the full range of common materials, from metals to ionic solids, hampering the applications of DFT for modern problems such as battery design. Here, we introduce a universally optimized vdW-corrected DFT method that demonstrates an unbiased reliability for predicting molecular, layered, ionic, metallic, and hybrid materials without incurring a large computational overhead. We use our method to accurately predict the intercalation potentials of layered electrode materials of a Li-ion battery system – a problem for which the existing state-of-the-art methods fail. Thus, we envisage broad use of our method in the design of chemo-physical processes of new materials.</p>


Author(s):  
Olle Eriksson ◽  
Anders Bergman ◽  
Lars Bergqvist ◽  
Johan Hellsvik

In the previous chapters we described the basic principles of density functional theory, gave examples of how accurate it is to describe static magnetic properties in general, and derived from this basis the master equation for atomistic spin-dynamics; the SLL (or SLLG) equation. However, one term was not described in these chapters, namely the damping parameter. This parameter is a crucial one in the SLL (or SLLG) equation, since it allows for energy and angular momentum to dissipate from the simulation cell. The damping parameter can be evaluated from density functional theory, and the Kohn-Sham equation, and it is possible to determine its value experimentally. This chapter covers in detail the theoretical aspects of how to calculate theoretically the damping parameter. Chapter 8 is focused, among other things, on the experimental detection of the damping, using ferromagnetic resonance.


2007 ◽  
Vol 75 (2) ◽  
Author(s):  
A. Sanna ◽  
G. Profeta ◽  
A. Floris ◽  
A. Marini ◽  
E. K. U. Gross ◽  
...  

Author(s):  
Nilanjan Roy ◽  
Sucharita Giri ◽  
Harshit ◽  
Partha P. Jana

Abstract The site preference and atomic ordering of the ternary Rh5Ga2As have been investigated using first-principles density functional theory (DFT). An interesting atomic ordering of two neighboring elements Ga and As reported in the structure of Rh5Ga2As by X-ray diffraction data only is confirmed by first-principles total-energy calculations. The previously reported experimental model with Ga/As ordering is indeed the most stable in the structure of Rh5Ga2As. The calculation detected that there is an obvious trend concerning the influence of the heteroatomic Rh–Ga/As contacts on the calculated total energy. Interestingly, the orderly distribution of As and Ga that is found in the binary GaAs (Zinc-blende structure type), retained to ternary Rh5Ga2As. The density of states (DOS) and Crystal Orbital Hamiltonian Population (COHP) are calculated to enlighten the stability and bonding characteristics in the structure of Rh5Ga2As. The bonding analysis also confirms that Rh–Ga/As short contacts are the major driving force towards the overall stability of the compound.


Author(s):  
I. Yu. Sklyadneva ◽  
Rolf Heid ◽  
Pedro Miguel Echenique ◽  
Evgueni Chulkov

Electron-phonon interaction in the Si(111)-supported rectangular √(7 ) ×√3 phases of In is investigated within the density-functional theory and linear-response. For both single-layer and double-layer √(7 ) ×√3 structures, it...


Sign in / Sign up

Export Citation Format

Share Document