scholarly journals Predicting concurrent structural mechanical mechanisms during microstructure evolution

Author(s):  
P. Soar ◽  
A. Kao ◽  
N. Shevchenko ◽  
S. Eckert ◽  
G. Djambazov ◽  
...  

The interdependence between structural mechanics and microstructure solidification has been widely observed experimentally as a factor leading to undesirable macroscopic properties and casting defects. Despite this, numerical modelling of microstructure solidification often neglects this interaction and is therefore unable to predict key mechanisms such as the development of misoriented grains. This paper presents a numerical method coupling a finite volume structural mechanics solver to a cellular automata solidification solver, where gravity or pressure-driven displacements alter the local orientation and thereby growth behaviour of the solidifying dendrites. Solutions obtained using this model are presented which show fundamental behaviours observed in experiments. The results show that small, localized deformations can lead to significant changes in the crystallographic orientation of a dendrite and ultimately affect the overall microstructure development. This article is part of the theme issue 'Transport phenomena in complex systems (part 2)'.

2004 ◽  
Vol 120 ◽  
pp. 225-230
Author(s):  
P. Mukhopadhyay ◽  
M. Loeck ◽  
G. Gottstein

A more refined 3D cellular Automata (CA) algorithm has been developed which has increased the resolution of the space and reduced the computation time and can take care of the complexity of recrystallization process through physically based solutions. This model includes recovery, condition for nucleation and orientation dependent variable nuclei growth as a process of primary static recrystallization. Incorporation of microchemistry effects makes this model suitable for simulating recrystallization behaviour in terms of texture, kinetics and microstructure of different alloys. The model is flexible to couple up with other simulation programs on a common database.


2010 ◽  
Vol 146-147 ◽  
pp. 1094-1101
Author(s):  
Fei Ding ◽  
Xiao Feng Wang

A numerical model is developed to describe the kinetics of the microstructure evolution in an atomized droplet of Mg-9wt%Al alloy. The model is coupled with the heat transfer controlling equations to simulate the solidification process of the atomized droplets. The numerical results show that the microstructure development is a result of the common action of the nucleation and growth of grains. The nucleation events take place at a critical supercooling for a given droplet. As the droplet size decreases, the critical supercooling increases significantly. The volume fractions of the phases formed during the period of the recalescence, the segregated solidification and the eutectic reaction are sensitive to the droplet size. It is demonstrated that the developed model describes the microstructure evolution process well.


2011 ◽  
Vol 311-313 ◽  
pp. 600-608
Author(s):  
Zhao Chen ◽  
Xiao Li Wen ◽  
Chang Le Chen

Solidification behaviour of Pb-Bi alloys under rotating magnetic field (RMF) was investigated experimentally to understand the effect of the frequency of RMF on the nucleation and growth behaviour. It was found that, as the increase of the rotating frequency, the grains are fragmented and refined gradually until a transition from columnar to equiaxed microstructures happens at a rotating frequency of 40 Hz. Moreover, the Bi concentration of the primary phase decreases and macrosegregation is eliminated effectively with RMF. These are due to the effect of RMF on the nucleation, growth and fluid flow in the solidification process.


2012 ◽  
Vol 186 ◽  
pp. 98-103
Author(s):  
Henryk Paul ◽  
Thierry Baudin ◽  
Anna Tarasek ◽  
François Brisset

The objective of this study was to determine the effect of ECAP-processing on the texture and the microstructure development of the deformed and recrystallized states. The commercial purity AA3104 aluminum alloy was deformed via route A up to 7 passes and then annealed to obtain the state of partial recrystallization. The shear bands formation and the texture transformation in annealing were investigated with the use of high resolution transmission and scanning electron microscopes equipped with the facilitates for the local orientation measurements. It was found that the instability of the layered structure of the flat grains within some narrow areas led to the formation of the kink-type bands, which were precursors of the shear bands. The orientations of the new grains occurring in the recrystallized samples were not random, i.e. only specific groups of orientations were observed. In most of the observed cases, the growth of the recrystallized grains led to nearly homogeneous equiaxed grains of a similar size.


Sign in / Sign up

Export Citation Format

Share Document