scholarly journals ‘Bodily precision’: a predictive coding account of individual differences in interoceptive accuracy

2016 ◽  
Vol 371 (1708) ◽  
pp. 20160003 ◽  
Author(s):  
Vivien Ainley ◽  
Matthew A. J. Apps ◽  
Aikaterini Fotopoulou ◽  
Manos Tsakiris

Individuals differ in their awareness of afferent information from within their bodies, which is typically assessed by a heartbeat perception measure of ‘interoceptive accuracy’ (IAcc). Neural and behavioural correlates of this trait have been investigated, but a theoretical explanation has yet to be presented. Building on recent models that describe interoception within the free energy/predictive coding framework, this paper applies similar principles to IAcc, proposing that individual differences in IAcc depend on ‘precision’ in interoceptive systems, i.e. the relative weight accorded to ‘prior’ representations and ‘prediction errors’ (that part of incoming interoceptive sensation not accounted for by priors), at various levels within the cortical hierarchy and between modalities. Attention has the effect of optimizing precision both within and between sensory modalities. Our central assumption is that people with high IAcc are able, with attention, to prioritize interoception over other sensory modalities and can thus adjust the relative precision of their interoceptive priors and prediction errors, where appropriate, given their personal history. This characterization explains key findings within the interoception literature; links results previously seen as unrelated or contradictory; and may have important implications for understanding cognitive, behavioural and psychopathological consequences of both high and low interoceptive awareness. This article is part of the themed issue ‘Interoception beyond homeostasis: affect, cognition and mental health’.

2021 ◽  
Author(s):  
Yusuke Haruki ◽  
Kenji Ogawa

Perception of internal bodily sensations or interoception has recently been studied under a predictive coding framework. In this framework, the brain utilizes both top-down prediction and bottom-up prediction error signals to determine the content of the perception through inferences regarding the cause of the ongoing sensation. Particularly, interoception and other exteroceptive sensory modalities are considered to share an integrated, intertwined process of inference. Thus, it is possible that exteroceptive stimuli interfere with the inference of interoception. Hence, we investigated whether auditory stimuli disrupted interoceptive inference that resulted in diminished awareness of interoception. Thirty healthy volunteers performed the heartbeat counting task with and without distractor sounds. The psychophysiological traits that would reflect the individual differences in prior prediction signals of interoception were measured as the high-frequency component of the heart rate variability (HF-HRV) at rest and trait interoceptive sensibility. The results showed that the auditory distractor diminished objective interoceptive accuracy, subjective confidence in interoception, and the intensity of the heartbeat, suggesting disrupted interoceptive inference under external stimuli. Importantly, individual differences in the distractor effect were modulated by both the HF-HRV and tendency to worry about bodily states. These findings support and extend the predictive coding account of interoception by suggesting that interoceptive inference could be disrupted by external stimuli and that such disruption may be modulated by a difference in prior predictions and its precision regarding interoception.


2016 ◽  
Vol 30 (2) ◽  
pp. 76-86 ◽  
Author(s):  
Judith Meessen ◽  
Verena Mainz ◽  
Siegfried Gauggel ◽  
Eftychia Volz-Sidiropoulou ◽  
Stefan Sütterlin ◽  
...  

Abstract. Recently, Garfinkel and Critchley (2013) proposed to distinguish between three facets of interoception: interoceptive sensibility, interoceptive accuracy, and interoceptive awareness. This pilot study investigated how these facets interrelate to each other and whether interoceptive awareness is related to the metacognitive awareness of memory performance. A sample of 24 healthy students completed a heartbeat perception task (HPT) and a memory task. Judgments of confidence were requested for each task. Participants filled in questionnaires assessing interoceptive sensibility, depression, anxiety, and socio-demographic characteristics. The three facets of interoception were found to be uncorrelated and interoceptive awareness was not related to metacognitive awareness of memory performance. Whereas memory performance was significantly related to metamemory awareness, interoceptive accuracy (HPT) and interoceptive awareness were not correlated. Results suggest that future research on interoception should assess all facets of interoception in order to capture the multifaceted quality of the construct.


Author(s):  
Roberto Limongi ◽  
Angélica M. Silva

Abstract. The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production – where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryan Smith ◽  
◽  
Justin S. Feinstein ◽  
Rayus Kuplicki ◽  
Katherine L. Forthman ◽  
...  

AbstractThis study employed a series of heartbeat perception tasks to assess the hypothesis that cardiac interoceptive processing in individuals with depression/anxiety (N = 221), and substance use disorders (N = 136) is less flexible than that of healthy individuals (N = 53) in the context of physiological perturbation. Cardiac interoception was assessed via heartbeat tapping when: (1) guessing was allowed; (2) guessing was not allowed; and (3) experiencing an interoceptive perturbation (inspiratory breath hold) expected to amplify cardiac sensation. Healthy participants showed performance improvements across the three conditions, whereas those with depression/anxiety and/or substance use disorder showed minimal improvement. Machine learning analyses suggested that individual differences in these improvements were negatively related to anxiety sensitivity, but explained relatively little variance in performance. These results reveal a perceptual insensitivity to the modulation of interoceptive signals that was evident across several common psychiatric disorders, suggesting that interoceptive deficits in the realm of psychopathology manifest most prominently during states of homeostatic perturbation.


2021 ◽  
Vol 92 (8) ◽  
pp. A3.3-A4
Author(s):  
Harriet Sharp ◽  
Kristy Themelis ◽  
Marisa Amato ◽  
Andrew Barritt ◽  
Kevin Davies ◽  
...  

IntroductionThe aetiology and pathophysiology of fibromyalgia and ME/CFS are poorly characterised but altered inflammatory, autonomic and interoceptive processes have been implicated. Interoception has been conceptualised as a predictive coding process; where top-down prediction signals compare to bottom-up afferents, resulting in prediction error signals indicating mismatch between expected and actual bodily states. Chronic dyshomeostasis and elevated interoceptive prediction error signals have been theorised to contribute to the expression of pain and fatigue in fibromyalgia and ME/CFS.Objectives/AimsTo investigate how altered interoception and prediction error relates to baseline expression of pain and fatigue in fibromyalgia and ME/CFS and in response to an inflammatory challenge.MethodsSixty-five patients with fibromyalgia and/or ME/CFS diagnosis and 26 matched controls underwent baseline assessment: self-report questionnaires assessing subjective pain and fatigue and objective measurements of pressure-pain thresholds. Participants received injections of typhoid (inflammatory challenge) or saline (placebo) in a randomised, double-blind, crossover design, then completed heartbeat tracking task (assessing interoceptive accuracy). Porges Body Questionnaire assessed interoceptive sensibility. Interoceptive prediction error (IPE) was calculated as discrepancy between objective accuracy and subjective sensibility.ResultsPatients with fibromyalgia and ME/CFS had significantly higher IPE (suggesting tendency to over-estimate interoceptive ability) and interoceptive sensibility, despite no differences in interoceptive accuracy. IPE and sensibility correlated positively with all self-report fatigue and pain measures, and negatively with pain thresholds. Following inflammatory challenge, IPE correlated negatively with the mismatch between subjective and objective measures of pain induced by inflammation.ConclusionsThis is the first study to reveal altered interoception processes in patients with fibromyalgia and ME/CFS, who are known to have dysregulated autonomic function. Notably, we found elevated IPE in patients, correlating with their subjective experiences of pain and fatigue. We hypothesise a predictive coding model, where mismatch between expected and actual internal bodily states (linked to autonomic dysregulation) results in prediction error signalling which could be metacognitively interpreted as chronic pain and fatigue. Our results demonstrate potential for further exploration of interoceptive processing in patients with fibromyalgia and ME/CFS, aiding understanding of these poorly defined conditions and providing potential new targets for diagnostic and therapeutic intervention.


2019 ◽  
Vol 9 (6) ◽  
pp. 131 ◽  
Author(s):  
Michael Eggart ◽  
Andreas Lange ◽  
Martin Binser ◽  
Silvia Queri ◽  
Bruno Müller-Oerlinghausen

Interoception is the sense of the physiological condition of the entire body. Impaired interoception has been associated with aberrant activity of the insula in major depressive disorder (MDD) during heartbeat perception tasks. Despite clinical relevance, studies investigating interoceptive impairments in MDD have never been reviewed systematically according to the guidelines of the PRISMA protocol, and therefore we collated studies that assessed accuracy in detecting heartbeat sensations (interoceptive accuracy, IAc) in MDD (databases: PubMed/Medline, PsycINFO, and PsycARTICLES). Out of 389 records, six studies met the inclusion criteria. The main findings suggest that (i) moderately depressed samples exhibit the largest interoceptive deficits as compared with healthy adults. (ii) difficulties in decision making and low affect intensity are correlated with low IAc, and (iii) IAc seems to normalize in severely depressed subjects. These associations may be confounded by sex, anxiety or panic disorder, and intake of selective serotonin reuptake inhibitors. Our findings have implications for the development of interoceptive treatments that might relieve MDD-related symptoms or prevent relapse in recurrent depression by targeting the interoceptive nervous system.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Leah Banellis ◽  
Damian Cruse

Abstract Several theories propose that emotions and self-awareness arise from the integration of internal and external signals and their respective precision-weighted expectations. Supporting these mechanisms, research indicates that the brain uses temporal cues from cardiac signals to predict auditory stimuli and that these predictions and their prediction errors can be observed in the scalp heartbeat-evoked potential (HEP). We investigated the effect of precision modulations on these cross-modal predictive mechanisms, via attention and interoceptive ability. We presented auditory sequences at short (perceived synchronous) or long (perceived asynchronous) cardio-audio delays, with half of the trials including an omission. Participants attended to the cardio-audio synchronicity of the tones (internal attention) or the auditory stimuli alone (external attention). Comparing HEPs during omissions allowed for the observation of pure predictive signals, without contaminating auditory input. We observed an early effect of cardio-audio delay, reflecting a difference in heartbeat-driven expectations. We also observed a larger positivity to the omissions of sounds perceived as synchronous than to the omissions of sounds perceived as asynchronous when attending internally only, consistent with the role of attentional precision for enhancing predictions. These results provide support for attentionally modulated cross-modal predictive coding and suggest a potential tool for investigating its role in emotion and self-awareness.


2013 ◽  
Vol 36 (3) ◽  
pp. 221-221 ◽  
Author(s):  
Lars Muckli ◽  
Lucy S. Petro ◽  
Fraser W. Smith

AbstractClark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models).


2016 ◽  
Vol 113 (17) ◽  
pp. 4812-4817 ◽  
Author(s):  
Eran Eldar ◽  
Tobias U. Hauser ◽  
Peter Dayan ◽  
Raymond J. Dolan

Pain is an elemental inducer of avoidance. Here, we demonstrate that people differ in how they learn to avoid pain, with some individuals refraining from actions that resulted in painful outcomes, whereas others favor actions that helped prevent pain. These individual biases were best explained by differences in learning from outcome prediction errors and were associated with distinct forms of striatal responses to painful outcomes. Specifically, striatal responses to pain were modulated in a manner consistent with an aversive prediction error in individuals who learned predominantly from pain, whereas in individuals who learned predominantly from success in preventing pain, modulation was consistent with an appetitive prediction error. In contrast, striatal responses to success in preventing pain were consistent with an appetitive prediction error in both groups. Furthermore, variation in striatal structure, encompassing the region where pain prediction errors were expressed, predicted participants’ predominant mode of learning, suggesting the observed learning biases may reflect stable individual traits. These results reveal functional and structural neural components underlying individual differences in avoidance learning, which may be important contributors to psychiatric disorders involving pathological harm avoidance behavior.


2016 ◽  
Vol 39 ◽  
Author(s):  
Fernando Ferreira-Santos

AbstractWithin a predictive coding approach, the arousal/norepinephrine effects described by the GANE (glutamate amplifies noradrenergic effects) model seem to modulate the precision attributed to prediction errors, favoring the selective updating of predictive models with larger prediction errors. However, to explain how arousal effects are triggered, it is likely that different kinds of prediction errors (including interoceptive/affective) need to be considered.


Sign in / Sign up

Export Citation Format

Share Document