scholarly journals Developing defined substrates for stem cell culture and differentiation

2018 ◽  
Vol 373 (1750) ◽  
pp. 20170230 ◽  
Author(s):  
Louise Hagbard ◽  
Katherine Cameron ◽  
Paul August ◽  
Christopher Penton ◽  
Malin Parmar ◽  
...  

Over the past few decades, a variety of different reagents for stem cell maintenance and differentiation have been commercialized. These reagents share a common goal in facilitating the manufacture of products suitable for cell therapy while reducing the amount of non-defined components. Lessons from developmental biology have identified signalling molecules that can guide the differentiation process in vitro , but less attention has been paid to the extracellular matrix used. With the introduction of more biologically relevant and defined matrices, that better mimic specific cell niches, researchers now have powerful resources to fine-tune their in vitro differentiation systems, which may allow the manufacture of therapeutically relevant cell types. In this review article, we revisit the basics of the extracellular matrix, and explore the important role of the cell–matrix interaction. We focus on laminin proteins because they help to maintain pluripotency and drive cell fate specification. This article is part of the theme issue ‘Designer human tissue: coming to a lab near you’.

Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2407
Author(s):  
Ruicen He ◽  
Arthur Dantas ◽  
Karl Riabowol

Acetylation of histones is a key epigenetic modification involved in transcriptional regulation. The addition of acetyl groups to histone tails generally reduces histone-DNA interactions in the nucleosome leading to increased accessibility for transcription factors and core transcriptional machinery to bind their target sequences. There are approximately 30 histone acetyltransferases and their corresponding complexes, each of which affect the expression of a subset of genes. Because cell identity is determined by gene expression profile, it is unsurprising that the HATs responsible for inducing expression of these genes play a crucial role in determining cell fate. Here, we explore the role of HATs in the maintenance and differentiation of various stem cell types. Several HAT complexes have been characterized to play an important role in activating genes that allow stem cells to self-renew. Knockdown or loss of their activity leads to reduced expression and or differentiation while particular HATs drive differentiation towards specific cell fates. In this study we review functions of the HAT complexes active in pluripotent stem cells, hematopoietic stem cells, muscle satellite cells, mesenchymal stem cells, neural stem cells, and cancer stem cells.


2002 ◽  
Vol 4 (1) ◽  
pp. 1-24 ◽  
Author(s):  
Josephine Clare Adams

The adhesion of cells to their surrounding extracellular matrix has vital roles in embryonic development, inflammatory responses, wound healing and adult tissue homeostasis. Cells attach to extracellular matrix by specific cell-surface receptors, of which the integrins and transmembrane proteoglycans are major representatives. The engagement of adhesion receptors triggers assembly of functional matrix contacts, in which bound matrix components, adhesion receptors and associated intracellular cytoskeletal and signalling molecules form large, localised multiprotein complexes. This review discusses the functional categories of matrix contacts, examples of the biological roles of matrix contacts in normal physiology, and examples of the ways in which abnormalities of matrix contacts are associated with major human diseases.


Development ◽  
1995 ◽  
Vol 121 (11) ◽  
pp. 3637-3650 ◽  
Author(s):  
C.P. Austin ◽  
D.E. Feldman ◽  
J.A. Ida ◽  
C.L. Cepko

The first cells generated during development of the vertebrate retina are the ganglion cells, the projection neurons of the retina. Although they are one of the most intensively studied cell types within the central nervous system, little is known of the mechanisms that determine ganglion cell fate. We demonstrate that ganglion cells are selected from a large group of competent progenitors that comprise the majority of the early embryonic retina and that differentiation within this group is regulated by Notch. Notch activity in vivo was diminished using antisense oligonucleotides or augmented using a retrovirally transduced constitutively active allele of Notch. The number of ganglion cells produced was inversely related to the level of Notch activity. In addition, the Notch ligand Delta inhibited retinal progenitors from differentiating as ganglion cells to the same degree as did activated Notch in an in vitro assay. These results suggest a conserved strategy for neurogenesis in the retina and describe a versatile in vitro and in vivo system with which to examine the action of the Notch pathway in a specific cell fate decision in a vertebrate.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Anqi Guo ◽  
Bingjie Wang ◽  
Cheng Lyu ◽  
Wenjing Li ◽  
Yaozu Wu ◽  
...  

Abstract Background Apparent Young’s modulus (AYM), which reflects the fundamental mechanical property of live cells measured by atomic force microscopy and is determined by substrate stiffness regulated cytoskeletal organization, has been investigated as potential indicators of cell fate in specific cell types. However, applying biophysical cues, such as modulating the substrate stiffness, to regulate AYM and thereby reflect and/or control stem cell lineage specificity for downstream applications, remains a primary challenge during in vitro stem cell expansion. Moreover, substrate stiffness could modulate cell heterogeneity in the single-cell stage and contribute to cell fate regulation, yet the indicative link between AYM and cell fate determination during in vitro dynamic cell expansion (from single-cell stage to multi-cell stage) has not been established. Results Here, we show that the AYM of cells changed dynamically during passaging and proliferation on substrates with different stiffness. Moreover, the same change in substrate stiffness caused different patterns of AYM change in epithelial and mesenchymal cell types. Embryonic stem cells and their derived progenitor cells exhibited distinguishing AYM changes in response to different substrate stiffness that had significant effects on their maintenance of pluripotency and/or lineage-specific characteristics. On substrates that were too rigid or too soft, fluctuations in AYM occurred during cell passaging and proliferation that led to a loss in lineage specificity. On a substrate with ‘optimal’ stiffness (i.e., 3.5 kPa), the AYM was maintained at a constant level that was consistent with the parental cells during passaging and proliferation and led to preservation of lineage specificity. The effects of substrate stiffness on AYM and downstream cell fate were correlated with intracellular cytoskeletal organization and nuclear/cytoplasmic localization of YAP. Conclusions In summary, this study suggests that optimal substrate stiffness regulated consistent AYM during passaging and proliferation reflects and contributes to hESCs and their derived progenitor cells lineage specificity maintenance, through the underlying mechanistic pathways of stiffness-induced cytoskeletal organization and the downstream YAP signaling. These findings highlighted the potential of AYM as an indicator to select suitable substrate stiffness for stem cell specificity maintenance during in vitro expansion for regenerative applications.


2021 ◽  
Vol 22 (2) ◽  
pp. 637
Author(s):  
Margit Rosner ◽  
Manuel Reithofer ◽  
Dieter Fink ◽  
Markus Hengstschläger

For obvious reasons, such as, e.g., ethical concerns or sample accessibility, model systems are of highest importance to study the underlying molecular mechanisms of human maladies with the aim to develop innovative and effective therapeutic strategies. Since many years, animal models and highly proliferative transformed cell lines are successfully used for disease modelling, drug discovery, target validation, and preclinical testing. Still, species-specific differences regarding genetics and physiology and the limited suitability of immortalized cell lines to draw conclusions on normal human cells or specific cell types, are undeniable shortcomings. The progress in human pluripotent stem cell research now allows the growth of a virtually limitless supply of normal and DNA-edited human cells, which can be differentiated into various specific cell types. However, cells in the human body never fulfill their functions in mono-lineage isolation and diseases always develop in complex multicellular ecosystems. The recent advances in stem cell-based 3D organoid technologies allow a more accurate in vitro recapitulation of human pathologies. Embryoids are a specific type of such multicellular structures that do not only mimic a single organ or tissue, but the entire human conceptus or at least relevant components of it. Here we briefly describe the currently existing in vitro human embryo models and discuss their putative future relevance for disease modelling and drug discovery.


2021 ◽  
pp. 1-18
Author(s):  
Ryan S. Stowers

In the fields of regenerative medicine and tissue engineering, stem cells offer vast potential for treating or replacing diseased and damaged tissue. Much progress has been made in understanding stem cell biology, yielding protocols for directing stem cell differentiation toward the cell type of interest for a specific application. One particularly interesting and powerful signaling cue is the extracellular matrix (ECM) surrounding stem cells, a network of biopolymers that, along with cells, makes up what we define as a tissue. The composition, structure, biochemical features, and mechanical properties of the ECM are varied in different tissues and developmental stages, and serve to instruct stem cells toward a specific lineage. By understanding and recapitulating some of these ECM signaling cues through engineered ECM-mimicking hydrogels, stem cell fate can be directed in vitro. In this review, we will summarize recent advances in material systems to guide stem cell fate, highlighting innovative methods to capture ECM functionalities and how these material systems can be used to provide basic insight into stem cell biology or make progress toward therapeutic objectives.


Author(s):  
Clara Maria Mateos-Quiros ◽  
Sergio Garrido-Jimenez ◽  
Guadalupe Álvarez-Hernán ◽  
Selene Diaz-Chamorro ◽  
Juan Francisco Barrera-Lopez ◽  
...  

Tight-junction (TJ) proteins are essential for establishing the barrier function between neighbor epithelial cells, but also for recognition of pathogens or cell migration. Establishing the expression pattern and localization of different TJ proteins will help to understand the development and physiology of the airway. Here we identify that the junctional adhesion molecule 3 (Jam3) expression is restricted to multiciliated cells (MCCs) in the airway epithelium. In vitro, Jam3 expression varies along airway basal stem cell (BSC) differentiation and upon DAPT treatment or IL6 exposure. However, Jam3 is not required for BSC differentiation to specific cell types. In addition, we found that MCC lacking Jam3 display normal cilia morphology and cilia beating frequency with a delay in BB assembly/positioning in MCCs during differentiation. Remarkably, Jam3 in MCC is mostly localized to subapical organelles, which are negative for the apical recycling endosome marker Rab11 and positive for EEA1. Our data show that Jam3 expression is connected to mature MCC in the airway epithelium and suggest a Jam3 role unrelated to its known barrier function.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shana M. Busch ◽  
Zareeb Lorenzana ◽  
Amy L. Ryan

The extracellular matrix (ECM) is not simply a quiescent scaffold. This three-dimensional network of extracellular macromolecules provides structural, mechanical, and biochemical support for the cells of the lung. Throughout life, the ECM forms a critical component of the pulmonary stem cell niche. Basal cells (BCs), the primary stem cells of the airways capable of differentiating to all luminal cell types, reside in close proximity to the basolateral ECM. Studying BC-ECM interactions is important for the development of therapies for chronic lung diseases in which ECM alterations are accompanied by an apparent loss of the lung’s regenerative capacity. The complexity and importance of the native ECM in the regulation of BCs is highlighted as we have yet to create an in vitro culture model that is capable of supporting the long-term expansion of multipotent BCs. The interactions between the pulmonary ECM and BCs are, therefore, a vital component for understanding the mechanisms regulating BC stemness during health and disease. If we are able to replicate these interactions in airway models, we could significantly improve our ability to maintain basal cell stemness ex vivo for use in in vitro models and with prospects for cellular therapies. Furthermore, successful, and sustained airway regeneration in an aged or diseased lung by small molecules, novel compounds or via cellular therapy will rely upon both manipulation of the airway stem cells and their immediate niche within the lung. This review will focus on the current understanding of how the pulmonary ECM regulates the basal stem cell function, how this relationship changes in chronic disease, and how replicating native conditions poses challenges for ex vivo cell culture.


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Rosaria Santoro ◽  
Gianluca Lorenzo Perrucci ◽  
Aoife Gowran ◽  
Giulio Pompilio

The cellular response to the extracellular matrix (ECM) microenvironment mediated by integrin adhesion is of fundamental importance, in both developmental and pathological processes. In particular, mechanotransduction is of growing importance in groundbreaking cellular models such as induced pluripotent stem cells (iPSC), since this process may strongly influence cell fate and, thus, augment the precision of differentiation into specific cell types, e.g., cardiomyocytes. The decryption of the cellular machinery starting from ECM sensing to iPSC differentiation calls for new in vitro methods. Conveniently, engineered biomaterials activating controlled integrin-mediated responses through chemical, physical, and geometrical designs are key to resolving this issue and could foster clinical translation of optimized iPSC-based technology. This review introduces the main integrin-dependent mechanisms and signalling pathways involved in mechanotransduction. Special consideration is given to the integrin-iPSC linkage signalling chain in the cardiovascular field, focusing on biomaterial-based in vitro models to evaluate the relevance of this process in iPSC differentiation into cardiomyocytes.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Alejandro Luarte ◽  
Luis Federico Bátiz ◽  
Ursula Wyneken ◽  
Carlos Lafourcade

Neurodegenerative disorders are one of the leading causes of death and disability and one of the biggest burdens on health care systems. Novel approaches using various types of stem cells have been proposed to treat common neurodegenerative disorders such as Alzheimer’s Disease, Parkinson’s Disease, or stroke. Moreover, as the secretome of these cells appears to be of greater benefit compared to the cells themselves, the extracellular components responsible for its therapeutic benefit have been explored. Stem cells, as well as most cells, release extracellular vesicles such as exosomes, which are nanovesicles able to target specific cell types and thus to modify their function by delivering proteins, lipids, and nucleic acids. Exosomes have recently been testedin vivoandin vitroas therapeutic conveyors for the treatment of diseases. As such, they could be engineered to target specific populations of cells within the CNS. Considering the fact that many degenerative brain diseases have an impact on adult neurogenesis, we discuss how the modulation of the adult neurogenic niches may be a therapeutic target of stem cell-derived exosomes. These novel approaches should be examined in cellular and animal models to provide better, more effective, and specific therapeutic tools in the future.


Sign in / Sign up

Export Citation Format

Share Document