scholarly journals Seminal fluid and accessory male investment in sperm competition

2020 ◽  
Vol 375 (1813) ◽  
pp. 20200068
Author(s):  
Steven A. Ramm

Sperm production and allocation strategies have been a central concern of sperm competition research for the past 50 years. But during the ‘sexual cascade’ there may be strong selection for alternative routes to maximizing male fitness. Especially with the evolution of internal fertilization, a common and by now well-studied example is the accessory ejaculate investment represented by seminal fluid, the complex mixture of proteins, peptides and other components transferred to females together with sperm. How seminal fluid investment should covary with sperm investment probably depends on the mechanism of seminal fluid action. If seminal fluid components boost male paternity success by directly enhancing sperm function or use, we might often expect a positive correlation between the two forms of male investment, whereas trade-offs seem more likely if seminal fluid acts independently of sperm. This is largely borne out by a broad taxonomic survey to establish the prevailing patterns of seminal fluid production and allocation during animal evolution, in light of which I discuss the gaps that remain in our understanding of this key ejaculate component and its relationship to sperm investment, before outlining promising approaches for examining seminal fluid-mediated sperm competitiveness in the post-genomic era. This article is part of the theme issue ‘Fifty years of sperm competition’.

Author(s):  
Patricia L.R. Brennan ◽  
Dara N. Orbach

The field of post-copulatory sexual selection investigates how female and male adaptations have evolved to influence the fertilization of eggs while optimizing fitness during and after copulation, when females mate with multiple males. When females are polyandrous (one female mates with multiple males), they may optimize their mating rate and control the outcome of mating interactions to acquire direct and indirect benefits. Polyandry may also favor the evolution of male traits that offer an advantage in post-copulatory male-male sperm competition. Sperm competition occurs when the sperm, seminal fluid, and/or genitalia of one male directly impacts the outcome of fertilization success of a rival male. When a female mates with multiple males, she may use information from a number of traits to choose who will sire her offspring. This cryptic female choice (CFC) to bias paternity can be based on behavioral, physiological, and morphological criteria (e.g., copulatory courtship, volume and/or composition of seminal fluid, shape of grasping appendages). Because male fitness interests are rarely perfectly aligned with female fitness interests, sexual conflict over mating and fertilization commonly occur during copulatory and post-copulatory interactions. Post-copulatory interactions inherently involve close associations between female and male reproductive characteristics, which in many species potentially include sperm storage and sperm movement inside the female reproductive tract, and highlight the intricate coevolution between the sexes. This coevolution is also common in genital morphology. The great diversity of genitalia among species is attributed to sexual selection. The evolution of genital attributes that allow females to maintain reproductive autonomy over paternity via cryptic female choice or that prevent male manipulation and sexual control via sexually antagonistic coevolution have been well documented. Additionally, cases where genitalia evolve through intrasexual competition are well known. Another important area of study in post-copulatory sexual selection is the examination of trade-offs between investments in pre-copulatory and post-copulatory traits, since organisms have limited energetic resources to allocate to reproduction, and securing both mating and fertilization is essential for reproductive success.


2020 ◽  
Vol 375 (1813) ◽  
pp. 20200061 ◽  
Author(s):  
Geoff A. Parker

The past half century has seen the development of the field of post-ejaculatory sexual selection, the sequel to sexual selection for mate-acquisition (pre-ejaculatory) described by Darwin. In richness and diversity of adaptations, post-ejaculatory selection rivals that of pre-ejaculatory sexual selection. Anisogamy—and hence two sexes—likely arose by primeval gamete competition, and sperm competition remains a major force maintaining high sperm numbers. The post-ejaculatory equivalent of male–male competition for matings, sperm competition was an intense ancestral form of sexual selection, typically weakening as mobility and internal fertilization developed in many taxa, when some expenditure became diverted into pre-ejaculatory competition. Sperm competition theory has been relatively successful in explaining variation in relative testes size and sperm numbers per ejaculate and is becoming more successful in explaining variation in sperm phenotype. Sperm competition has generated many other male adaptations such as seminal fluid proteins that variously modify female reproduction towards male interests, and copulatory plugs, prolonged copulations and post-ejaculatory guarding behaviour that reduce female remating probability, many of which result in sexual conflict. This short survey of conceptual developments is intended as a broad overview, mainly as a primer for new researchers. This article is part of the theme issue ‘Fifty years of sperm competition'.


2021 ◽  
Author(s):  
Jake Galvin ◽  
Erica Larson ◽  
Sevan Yedigarian ◽  
Mohammad Rahman ◽  
Kirill Borziak ◽  
...  

Spermatozoal morphology is highly variable both among and within species and in ways that can significantly impact fertilization success. In Drosophila melanogaster, paternity success depends on sperm length of both competing males and length of the female's primary sperm storage organ. We found that genes upregulated in long sperm testes are enriched for lncRNAs and seminal fluid proteins (Sfps). Transferred in seminal fluid to the female during mating, Sfps are secreted by the male accessory glands (AG) and affect female remating rate, physiology, and behavior with concomitant advantages for male reproductive success. Despite being upregulated in long sperm testes, they have no known function in testis tissue. We found that Sex Peptide and ovulin (Acp26Aa) knockouts resulted in shorter sperm, suggesting that Sfps may regulate sperm length during spermatogenesis. However, knockout of AG function did not affect sperm length, suggesting that AG expression has no influence on spermatogenic processes. We also found that long sperm males are better able to delay female remating, suggesting higher Sfp expression in AG. These results might suggest that long sperm males have a double advantage in sperm competition by both delaying female remating, likely through transfer of more Sfps, and by resisting sperm displacement. However, we also found that this extra advantage does not necessarily translate to more progeny or higher paternity success. Thus, we found that multiple components of the ejaculate coordinate to promote male reproductive success at different stages of reproduction, but the realized fitness advantages in sperm competition are uncertain.


2019 ◽  
Author(s):  
Bahar Patlar ◽  
Steven A. Ramm

AbstractSperm competition commonly occurs whenever females mate multiply, leading to variation in male paternity success. This can be due to variation in the various traits that might affect sperm competitive ability, which itself depends on both genetic and environmental factors, as well as on genotype-by-environment interactions (GEI). Seminal fluid is a major component of the male ejaculate that is often expected to mediate sperm competition, where different genotypes can differ in their seminal fluid expression as a response to different level of sperm competition (i.e., exhibit GEI). We therefore here focussed on testing for GEI in expression of two recently identified seminal fluid transcripts,suckless-1andsuckless-2, which potentially modulate sperm competitive ability in the simultaneously hermaphroditic flatwormMacrostomum lignanovia their effects on manipulating post-mating partner behaviour and ultimately the fate of transferred ejaculates. In addition, we sought to test for GEI in sperm competitive ability, to investigate the relationship between natural variation in the expression of these seminal fluid transcripts generated through GEI and relative paternity success. To do so, we manipulated social group size, which has been shown to successfully alter sperm competition level inM. lignano, in a set of inbred lines (genotypes) and then measured both the expression level ofsuckless-1andsuckless-2in focal worms together with their relative paternity success in a standardised sperm competition (P1&P2) assay. We found GEI for the expression level ofsuckless-1andsuckless-2, as well as for sperm competitive ability. Moreover, we found a positive relation between the expression ofsuckless-1and paternity success. This suggests that natural variation in the expression of this seminal fluid transcript indeed can influence sperm competition outcomes inM. lignano.


2020 ◽  
Vol 375 (1813) ◽  
pp. 20200074
Author(s):  
John L. Fitzpatrick

Sperm competition is a powerful selective force that has shaped sexual traits throughout animal evolution. Yet, how fertilization mode (i.e. external versus internal fertilization) influences the scope and potential for sperm competition to act on ejaculates remains unclear. Here, I examine how fertilization mode shapes ejaculatory responses to sperm competition in fishes, a diverse group that constitute the majority of vertebrate biological diversity. Fishes are an ideal group for this examination because they exhibit a wide range of reproductive behaviours and an unparalleled number of transitions in fertilization mode compared to any other vertebrate group. Drawing on data from cartilaginous and bony fishes, I first show that rates of multiple paternity are higher in internally than externally fertilizing fishes, contrary to the prevailing expectation. I then summarize how sperm competition acts on sperm number and quality in internally and externally fertilizing fishes, highlighting where theoretical predictions differ between these groups. Differences in how ejaculates respond to sperm competition between fertilization modes are most apparent when considering sperm size and swimming performance. Clarifying how fertilization mode influences evolutionary responses in ejaculates will inform our understanding of ejaculate evolution across the animal tree of life. This article is part of the theme issue ‘Fifty years of sperm competition’.


2019 ◽  
Author(s):  
Michael Weber ◽  
Bahar Patlar ◽  
Steven A. Ramm

AbstractAlong with sperm, in many taxa male ejaculates also contain a complex mixture of proteins, peptides and other substances found in seminal fluid. Once seminal fluid proteins (SFPs) are transferred to the mating partner, they play crucial roles in mediating post-mating sexual selection, since they can modulate the partner’s behavior and physiology in ways that influence the reproductive success of both partners. One way in which sperm donors can maximize their own reproductive success is by changing the partners’ (sperm recipient’s) postcopulatory behavior to prevent or delay re-mating, thereby decreasing the likelihood or intensity of sperm competition. We therefore adopted a quantitative genetic approach combining gene expression and behavioral data to identify candidates that could mediate such a response in the simultaneously hermaphroditic flatwormMacrostomum lignano. We identified two putative SFPs - Mlig-pro46 and Mlig-pro63 - that exhibit a negative genetic correlation between transcript expression and mating frequency. Importantly, however, in one of the two different group sizes, differing in their sperm competition level, in which we measured genetic correlations, these same two transcripts are also linked to a second post-mating behavior inM. lignano, namely the ‘suck’ behavior of recipients in which, upon ejaculate receipt, the worm places its pharynx over its female genital opening and appears to attempt to remove ejaculate components. To therefore investigate directly whether these two candidates manipulate partner behavior, and test whether this impacts on competitive fertilization success, we performed a manipulative experiment using RNA interference-induced knockdown to ask how loss of Mlig-pro46 and Mlig-pro63 expression, singly and in combination, affects mating frequency, partner suck propensity and both defensive and offensive sperm competitive ability (P1andP2, respectively). None of the knock-down treatments impacted strongly on mating frequency or sperm competitive ability, but the knock-down of Mlig-pro63 resulted in a significantly decreased ‘suck’ propensity of mating partners. This suggests that Mlig-pro63 may normally act as a cue in the ejaculate to trigger recipient suck behavior, though the functional and adaptive significance of these two seminal proteins from a donor perspective remains enigmatic.


2021 ◽  
Author(s):  
Marco Demont ◽  
Paul I Ward ◽  
Wolf U Blanckenhorn ◽  
Stefan Lüpold ◽  
Oliver Y Martin ◽  
...  

Abstract Precise mechanisms underlying sperm storage and utilization are largely unknown, and data directly linking stored sperm to paternity remain scarce. We used competitive microsatellite PCR to study the effects of female morphology, copula duration and oviposition on the proportion of stored sperm provided by the second of two copulating males (S2) in Scathophaga stercoraria (Diptera: Scathophagidae), the classic model for sperm competition studies. We genotyped all offspring from potentially mixed-paternity clutches to establish the relationship between a second male’s stored sperm (S2) and paternity success (P2). We found consistent skew in sperm storage across the three female spermathecae, with relatively more second-male sperm stored in the singlet spermatheca than in the doublet spermathecae. S2 generally decreased with increasing spermathecal size, consistent with either heightened first-male storage in larger spermathecae, or less efficient sperm displacement in them. Additionally, copula duration and several two-way interactions influenced S2, highlighting the complexity of postcopulatory processes and sperm storage. Importantly, S2 and P2 were strongly correlated. Manipulation of the timing of oviposition strongly influenced observed sperm-storage patterns, with higher S2 when females laid no eggs before being sacrificed than when they oviposited between copulations, an observation consistent with adaptive plasticity in insemination. Our results identified multiple factors influencing sperm storage, nevertheless suggesting that the proportion of stored sperm is strongly linked to paternity (i.e., a fair raffle). Even more detailed data in this vein are needed to evaluate the general importance of sperm competition relative to cryptic female choice in postcopulatory sexual selection.


2020 ◽  
pp. 332-363
Author(s):  
Carola Becker ◽  
Raymond T. Bauer

In polyandrous mating systems, females mate multiple times and males have evolved adaptations for sperm competition which increase the number and fitness of their offspring. Mate guarding is a widespread monopolization strategy in groups where female receptivity is temporally restricted and often associated with the molt. Precopulatory guarding occurs in branchipods, copepods, peracarids and decapods. Postcopulatory guarding is notable in numerous brachyurans with males protecting females until her exoskeleton has hardened. During copulation, male success in fertilization depends on an effective sperm transfer mechanism, the precise placement of ejaculates closest to where female gametes are fertilized. Male copulatory systems are highly diverse and strongly adapted to these tasks, especially the structures that interact with the female genital ducts. The elaborate tips of brachyuran gonopods are supposed to act in the displacement, possibly even in the removal of rival sperm masses; however, sperm removal is only evident in crayfish: males eat spermatophores previously deposited by other males. During copulation of several crustacean groups, males transfer secretions that harden and form a sealant. These sperm plugs, plaques and gel layers may protect their own sperm, prevent remating or seal off rival sperm from the site of fertilization. Several groups of isopods and decapods have internal insemination, elaborate sperm storage organs and some exhibit internal fertilization. The intensity of sperm competition increases with the latency between the processes of insemination and fertilization. This chapter gives on overview on mate guarding, male sealants and the anatomical adaptations to sperm competition in crustaceans. We also briefly discuss the consequences of multiple matings for the genetic diversity of broods, i.e., single vs. multiple paternities. There is still a lack of data for many crustacean groups. Moreover, it is often hard to assess how successful a male strategy to ensure paternity actually is as many studies focus on either the behavioral, anatomical, or molecular aspects, while comprehensive multi-level studies on crustacean sperm competition are virtually absent from the literature.


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0123770 ◽  
Author(s):  
Takashi Yamane ◽  
Julieta Goenaga ◽  
Johanna Liljestrand Rönn ◽  
Göran Arnqvist

Sign in / Sign up

Export Citation Format

Share Document