scholarly journals Neuroscience needs evolution

Author(s):  
Paul Cisek ◽  
Benjamin Y. Hayden

The nervous system is a product of evolution. That is, it was constructed through a long series of modifications, within the strong constraints of heredity, and continuously subjected to intense selection pressures. As a result, the organization and functions of the brain are shaped by its history. We believe that this fact, underappreciated in contemporary systems neuroscience, offers an invaluable aid for helping us resolve the brain's mysteries. Indeed, we think that the consideration of evolutionary history ought to take its place alongside other intellectual tools used to understand the brain, such as behavioural experiments, studies of anatomical structure and functional characterization based on recordings of neural activity. In this introduction, we argue for the importance of evolution by highlighting specific examples of ways that evolutionary theory can enhance neuroscience. The rest of the theme issue elaborates this point, emphasizing the conservative nature of neural evolution, the important consequences of specific transitions that occurred in our history, and the ways in which considerations of evolution can shed light on issues ranging from specific mechanisms to fundamental principles of brain organization. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.

Author(s):  
Malcolm A. MacIver ◽  
Barbara L. Finlay

The water-to-land transition in vertebrate evolution offers an unusual opportunity to consider computational affordances of a new ecology for the brain. All sensory modalities are changed, particularly a greatly enlarged visual sensorium owing to air versus water as a medium, and expanded by mobile eyes and neck. The multiplication of limbs, as evolved to exploit aspects of life on land, is a comparable computational challenge. As the total mass of living organisms on land is a hundredfold larger than the mass underwater, computational improvements promise great rewards. In water, the midbrain tectum coordinates approach/avoid decisions, contextualized by water flow and by the animal’s body state and learning. On land, the relative motions of sensory surfaces and effectors must be resolved, adding on computational architectures from the dorsal pallium, such as the parietal cortex. For the large-brained and long-living denizens of land, making the right decision when the wrong one means death may be the basis of planning, which allows animals to learn from hypothetical experience before enactment. Integration of value-weighted, memorized panoramas in basal ganglia/frontal cortex circuitry, with allocentric cognitive maps of the hippocampus and its associated cortices becomes a cognitive habit-to-plan transition as substantial as the change in ecology. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.


Author(s):  
David A. Leopold ◽  
Bruno B. Averbeck

We are curious by nature, particularly when young. Evolution has endowed our brain with an inbuilt obligation to educate itself. In this perspectives article, we posit that self-tuition is an evolved principle of vertebrate brain design that is reflected in its basic architecture and critical for its normal development. Self-tuition involves coordination between functionally distinct components of the brain, with one set of areas motivating exploration that leads to the experiences that train another set. We review key hypothalamic and telencephalic structures involved in this interplay, including their anatomical connections and placement within the segmental architecture of conserved forebrain circuits. We discuss the nature of educative behaviours motivated by the hypothalamus, innate stimulus biases, the relationship to survival in early life, and mechanisms by which telencephalic areas gradually accumulate knowledge. We argue that this aspect of brain function is of paramount importance for systems neuroscience, as it confers neural specialization and allows animals to attain far more sophisticated behaviours than would be possible through genetic mechanisms alone. Self-tuition is of particular importance in humans and other primates, whose large brains and complex social cognition rely critically on experience-based learning during a protracted childhood period. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.


Author(s):  
Justin M. Fine ◽  
Benjamin Y. Hayden

We propose that the entirety of the prefrontal cortex (PFC) can be seen as fundamentally premotor in nature. By this, we mean that the PFC consists of an action abstraction hierarchy whose core function is the potentiation and depotentiation of possible action plans at different levels of granularity. We argue that the apex of the hierarchy should revolve around the process of goal-selection, which we posit is inherently a form of optimization over action abstraction. Anatomical and functional evidence supports the idea that this hierarchy originates on the orbital surface of the brain and extends dorsally to motor cortex. Accordingly, our viewpoint positions the orbitofrontal cortex in a key role in the optimization of goal-selection policies, and suggests that its other proposed roles are aspects of this more general function. Our proposed perspective will reframe outstanding questions, open up new areas of inquiry and align theories of prefrontal function with evolutionary principles. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nashaiman Pervaiz ◽  
Hongen Kang ◽  
Yiming Bao ◽  
Amir Ali Abbasi

Abstract Background There has been a rapid increase in the brain size relative to body size during mammalian evolutionary history. In particular, the enlarged and globular brain is the most distinctive anatomical feature of modern humans that set us apart from other extinct and extant primate species. Genetic basis of large brain size in modern humans has largely remained enigmatic. Genes associated with the pathological reduction of brain size (primary microcephaly-MCPH) have the characteristics and functions to be considered ideal candidates to unravel the genetic basis of evolutionary enlargement of human brain size. For instance, the brain size of microcephaly patients is similar to the brain size of Pan troglodyte and the very early hominids like the Sahelanthropus tchadensis and Australopithecus afarensis. Results The present study investigates the molecular evolutionary history of subset of autosomal recessive primary microcephaly (MCPH) genes; CEP135, ZNF335, PHC1, SASS6, CDK6, MFSD2A, CIT, and KIF14 across 48 mammalian species. Codon based substitutions site analysis indicated that ZNF335, SASS6, CIT, and KIF14 have experienced positive selection in eutherian evolutionary history. Estimation of divergent selection pressure revealed that almost all of the MCPH genes analyzed in the present study have maintained their functions throughout the history of placental mammals. Contrary to our expectations, human-specific adoptive evolution was not detected for any of the MCPH genes analyzed in the present study. Conclusion Based on these data it can be inferred that protein-coding sequence of MCPH genes might not be the sole determinant of increase in relative brain size during primate evolutionary history.


2020 ◽  
Vol 375 (1796) ◽  
pp. 20190319 ◽  
Author(s):  
Claus C. Hilgetag ◽  
Alexandros Goulas

Concepts shape the interpretation of facts. One of the most popular concepts in systems neuroscience is that of ‘hierarchy’. However, this concept has been interpreted in many different ways, which are not well aligned. This observation suggests that the concept is ill defined. Using the example of the organization of the primate visual cortical system, we explore several contexts in which ‘hierarchy’ is currently used in the description of brain networks. We distinguish at least four different uses, specifically, ‘hierarchy’ as a topological sequence of projections, as a gradient of features, as a progression of scales, or as a sorting of laminar projection patterns. We discuss the interpretation and functional implications of the different notions of ‘hierarchy’ in these contexts and suggest that more specific terms than ‘hierarchy’ should be used for a deeper understanding of the different dimensions of the organization of brain networks. This article is part of the theme issue ‘Unifying the essential concepts of biological networks: biological insights and philosophical foundations’.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
E Soltanmohammadi ◽  
Y Zhang ◽  
I Chatzistamou ◽  
H. Kiaris

Abstract Background Genes that belong to the same network are frequently co-expressed, but collectively, how the coordination of the whole transcriptome is perturbed during aging remains unclear. To explore this, we calculated the correlation of each gene in the transcriptome with every other, in the brain of young and older outbred deer mice (P. leucopus and P. maniculatus). Results In about 25 % of the genes, coordination was inversed during aging. Gene Ontology analysis in both species, for the genes that exhibited inverse transcriptomic coordination during aging pointed to alterations in the perception of smell, a known impairment occurring during aging. In P. leucopus, alterations in genes related to cholesterol metabolism were also identified. Among the genes that exhibited the most pronounced inversion in their coordination profiles during aging was THBS4, that encodes for thrombospondin-4, a protein that was recently identified as rejuvenation factor in mice. Relatively to its breadth, abolishment of coordination was more prominent in the long-living P. leucopus than in P. maniculatus but in the latter, the intensity of de-coordination was higher. Conclusions There sults suggest that aging is associated with more stringent retention of expression profiles for some genes and more abrupt changes in others, while more subtle but widespread changes in gene expression appear protective. Our findings shed light in the mode of the transcriptional changes occurring in the brain during aging and suggest that strategies aiming to broader but more modest changes in gene expression may be preferrable to correct aging-associated deregulation in gene expression.


Author(s):  
Sergio A Muñoz-Gómez ◽  
Keira Durnin ◽  
Laura Eme ◽  
Christopher Paight ◽  
Christopher E Lane ◽  
...  

Abstract A most interesting exception within the parasitic Apicomplexa is Nephromyces, an extracellular, probably mutualistic, endosymbiont found living inside molgulid ascidian tunicates (i.e., sea squirts). Even though Nephromyces is now known to be an apicomplexan, many other questions about its nature remain unanswered. To gain further insights into the biology and evolutionary history of this unusual apicomplexan, we aimed to (1) find the precise phylogenetic position of Nephromyces within the Apicomplexa, (2) search for the apicoplast genome of Nephromyces, and (3) infer the major metabolic pathways in the apicoplast of Nephromyces. To do this, we sequenced a metagenome and a metatranscriptome from the molgulid renal sac, the specialized habitat where Nephromyces thrives. Our phylogenetic analyses of conserved nucleus-encoded genes robustly suggest that Nephromyces is a novel lineage sister to the Hematozoa, which comprises both the Haemosporidia (e.g., Plasmodium) and the Piroplasmida (e.g., Babesia and Theileria). Furthermore, a survey of the renal sac metagenome revealed 13 small contigs that closely resemble the genomes of the non-photosynthetic reduced plastids, or apicoplasts, of other apicomplexans. We show that these apicoplast genomes correspond to a diverse set of most closely related but genetically divergent Nephromyces lineages that co-inhabit a single tunicate host. In addition, the apicoplast of Nephromyces appears to have retained all biosynthetic pathways inferred to have been ancestral to parasitic apicomplexans. Our results shed light on the evolutionary history of the only probably mutualistic apicomplexan known, Nephromyces, and provide context for a better understanding of its life style and intricate symbiosis.


2021 ◽  
Vol 376 (1821) ◽  
pp. 20190765 ◽  
Author(s):  
Giovanni Pezzulo ◽  
Joshua LaPalme ◽  
Fallon Durant ◽  
Michael Levin

Nervous systems’ computational abilities are an evolutionary innovation, specializing and speed-optimizing ancient biophysical dynamics. Bioelectric signalling originated in cells' communication with the outside world and with each other, enabling cooperation towards adaptive construction and repair of multicellular bodies. Here, we review the emerging field of developmental bioelectricity, which links the field of basal cognition to state-of-the-art questions in regenerative medicine, synthetic bioengineering and even artificial intelligence. One of the predictions of this view is that regeneration and regulative development can restore correct large-scale anatomies from diverse starting states because, like the brain, they exploit bioelectric encoding of distributed goal states—in this case, pattern memories. We propose a new interpretation of recent stochastic regenerative phenotypes in planaria, by appealing to computational models of memory representation and processing in the brain. Moreover, we discuss novel findings showing that bioelectric changes induced in planaria can be stored in tissue for over a week, thus revealing that somatic bioelectric circuits in vivo can implement a long-term, re-writable memory medium. A consideration of the mechanisms, evolution and functionality of basal cognition makes novel predictions and provides an integrative perspective on the evolution, physiology and biomedicine of information processing in vivo . This article is part of the theme issue ‘Basal cognition: multicellularity, neurons and the cognitive lens’.


Sign in / Sign up

Export Citation Format

Share Document