scholarly journals Size-dependent cell-to-cell movement of defective interfering RNAs of Cymbidium ringspot virus

2002 ◽  
Vol 83 (6) ◽  
pp. 1505-1510 ◽  
Author(s):  
György Szittya ◽  
Dániel Silhavy ◽  
Tamás Dalmay ◽  
József Burgyán

Co-inoculation of Nicotiana benthamiana plants with in vitro transcripts of both genomic and short defective interfering (DI) RNAs of Cymbidium ringspot virus results in an accumulation of de novo generated DI RNA dimers. Time-course analysis of DI RNA accumulation in the inoculated leaves showed early accumulation of DI RNA dimers followed by increased levels of DI RNA monomers. In contrast, DI RNA dimers were barely detectable in systems where cell-to-cell movement does not take place (protoplasts) or is less important (monomeric DI RNA-expressing transgenic plants). Our results also demonstrated that the size of DI RNAs is important in the colonization of inoculated leaves, suggesting that DI RNA dimers are quickly selected for cell-to-cell movement if short DI RNA monomers are used for infection.

2000 ◽  
Vol 74 (5) ◽  
pp. 2247-2254 ◽  
Author(s):  
Wenping Qiu ◽  
Scholthof G. Karen-Beth

ABSTRACT Satellite panicum mosaic virus (SPMV) depends on its helper virus, panicum mosaic virus (PMV), to provide trans-acting proteins for replication and movement. The 824-nucleotide (nt) genome of SPMV possesses an open reading frame encoding a 17.5-kDa capsid protein (CP), which is shown to be dispensable for SPMV replication. To localize cis-acting RNA elements required for replication and movement, a comprehensive set of SPMV cDNA deletion mutants was generated. The results showed that the 263-nt 3′ untranslated region (UTR) plus 73 nt upstream of the CP stop codon and the first 16 nt in the 5′ UTR are required for SPMV RNA amplification and/or systemic spread. A region from nt 17 to 67 within the 5′ UTR may have an accessory role in RNA accumulation, and a fragment bracketing nt 68 to 104 appears to be involved in the systemic movement of SPMV RNA in a host-dependent manner. Unexpectedly, defective RNAs (D-RNAs) accumulated de novo in millet plants coinfected with PMV and either of two SPMV mutants: SPMV-91, which is incapable of expressing the 17.5-kDa CP, and SPMV-GUG, which expresses low levels of the 17.5-kDa CP. The D-RNA derived from SPMV-91 was isolated from infected plants and used as a template to generate a cDNA clone. RNA transcripts derived from this 399-nt cDNA replicated and moved in millet plants coinoculated with PMV. The characterization of this D-RNA provided a biological confirmation that the critical RNA domains identified by the reverse genetic strategy are essential for SPMV replication and movement. The results additionally suggest that a potential “trigger” for spontaneous D-RNA accumulation may be associated with the absence or reduced accumulation of the 17.5-kDa SPMV CP. This represents the first report of a D-RNA associated with a satellite virus.


2020 ◽  
Author(s):  
Scott K. Adney ◽  
John J. Millichap ◽  
Jean-Marc DeKeyser ◽  
Tatiana Abramova ◽  
Christopher H. Thompson ◽  
...  

ABSTRACTObjectiveWe identified a novel de novo SCN2A variant (M1879T) associated with infantile-onset epilepsy that responded dramatically to sodium channel blocker antiepileptic drugs. We analyzed the functional and pharmacological consequences of this variant to establish pathogenicity, and to correlate genotype with phenotype and clinical drug response.MethodsThe clinical and genetic features of an infant boy with epilepsy are presented. We investigated the effect of the variant using heterologously expressed recombinant human NaV1.2 channels. We performed whole-cell patch clamp recording to determine the functional consequences and response to carbamazepine.ResultsThe M1879T variant caused disturbances in channel inactivation including substantially depolarized voltage-dependence of inactivation, slower time course of inactivation, and enhanced resurgent current that collectively represent a gain-of-function. Carbamazepine partially normalized the voltage-dependence of inactivation and produced use-dependent block of the variant channel at high pulsing frequencies. Carbamazepine also suppresses resurgent current conducted by M1879T channels, but this effect was explained primarily by reducing the peak transient current. Molecular modeling suggests that the M1879T variant disrupts contacts with nearby residues in the C-terminal domain of the channel.InterpretationOur study demonstrates the value of conducting functional analyses of SCN2A variants of unknown significance to establish pathogenicity and genotype-phenotype correlations. We also show concordance of in vitro pharmacology using heterologous cells with the drug response observed clinically in a case of SCN2A-associated epilepsy.


Author(s):  
Vally Kommineni ◽  
Matthew Markert ◽  
Zhongjie Ren ◽  
Sreenath Palle ◽  
Berenice Carrillo ◽  
...  

N-glycosylation has been shown to affect the pharmacokinetic properties of several classes of biologics including monoclonal antibodies, blood factors, and lysosomal enzymes. In the last two decades, N-glycan engineering has been employed to achieve a N-glycosylation profile that is either more consistent or aligned with a specific improved activity (i.e. effector function or serum half-life). In particular, attention has focused on engineering processes in vivo or in vitro to alter the structure of the N-glycosylation of the Fc region of anti-cancer monoclonal antibodies in order to increase antibody-dependent cell-mediated cytotoxicity (ADCC). Here we applied the mannosidase I inhibitor kifunensine to the Nicotiana benthamiana transient expression platform to produce an afucosylated anti-CD20 antibody (rituximab). We determined the optimal concentration of kifunensine used in the infiltration solution, 0.375 µM, which was sufficient to produce exclusively oligomannose glycoforms, at a concentration 14 times lower than previously published levels. The resulting afucosylated rituximab revealed a 14-fold increase in ADCC activity targeting the lymphoma cell line Wil2-S when compared with rituximab produced in the absence of kifunensine. When applied to the cost-effective and scalable N. benthamiana transient expression platform, the use of kifunensine allows simple in-process glycan engineering without the need for transgenic hosts.


2005 ◽  
Vol 86 (5) ◽  
pp. 1543-1553 ◽  
Author(s):  
Prabha Ajjikuttira ◽  
Chiang-Shiong Loh ◽  
Sek-Man Wong

Complementation of movement and coat proteins of the orchid-infecting potexvirus Cymbidium mosaic virus (CymMV) and tobamovirus Odontoglossum ringspot virus (ORSV) was investigated. Nicotiana benthamiana, which is susceptible to both CymMV and ORSV, was used as a model system. Four transgenic lines, each harbouring one of the movement protein (MP) or coat protein (CP) genes of CymMV or ORSV, were constructed. The MP of CymMV consists of three overlapping open reading frames, together called the triple-gene block (TGB). CymMV and ORSV mutants, each carrying an inactivated MP or CP, were generated from the respective biologically active full-length cDNA clones. Complementation was studied by infecting transgenic plants with in vitro transcripts generated from these mutants. The cell-to-cell movement of a movement-deficient CymMV was restored in transgenic plants carrying the ORSV MP transgene. Similarly, CymMV TGB1 transgenic plants were able to rescue the cell-to-cell movement of a movement-deficient ORSV mutant. ORSV CP transgenic plants supported systemic movement of a CymMV CP-deficient mutant. However, in these plants, neither encapsidation of CymMV RNA with ORSV CP nor CymMV CP expression was detected. Long-distance movement of an ORSV CP-deficient mutant was not supported by CymMV CP. The complementation of MPs and CPs of CymMV and ORSV facilitates movement of these viruses in plants, except for long-distance movement of ORSV RNA by CymMV CP.


1981 ◽  
Vol 194 (3) ◽  
pp. 857-866 ◽  
Author(s):  
H Galski ◽  
S E Fridovich ◽  
D Weinstein ◽  
N De Groot ◽  
S Segal ◽  
...  

The synthesis and secretion of alkaline phosphatases in vitro by human placental tissue incubated in organ culture were studied. First-trimester placenta synthesizes and secretes two different alkaline phosphatase isoenzymes (heat-labile and heat-stable), whereas in term placenta nearly all the alkaline phosphatase synthesized and secreted is heat-stable. The specific activities of alkaline phosphatases in first-trimester and term placental tissue remain constant throughout the time course of incubation. In the media, specific activities increase with time. Hence, alkaline phosphatase synthesis seems to be the driving force for its own secretion. The rates of synthesis de novo and of alkaline phosphatases were measured. The specific radioactivities of the secreted alkaline phosphatases were higher than the corresponding specific radioactivities in the tissue throughout the entire incubation period. The intracellular distribution of the alkaline phosphatase isoenzymes was compared.


2001 ◽  
Vol 75 (24) ◽  
pp. 12153-12160 ◽  
Author(s):  
Chih-Wen Peng ◽  
Valera V. Peremyslov ◽  
Arcady R. Mushegian ◽  
William O. Dawson ◽  
Valerian V. Dolja

ABSTRACT Members of the Closteroviridae andPotyviridae families of the plant positive-strand RNA viruses encode one or two papain-like leader proteinases. In addition to a C-terminal proteolytic domain, each of these proteinases possesses a nonproteolytic N-terminal domain. We compared functions of the several leader proteinases using a gene swapping approach. The leader proteinase (L-Pro) of Beet yellows virus (BYV; a closterovirus) was replaced with L1 or L2 proteinases of Citrus tristeza virus (CTV; another closterovirus), P-Pro proteinase of Lettuce infectious yellows virus (LIYV; a crinivirus), and HC-Pro proteinase of Tobacco etch virus(a potyvirus). Each foreign proteinase efficiently processed the chimeric BYV polyprotein in vitro. However, only L1 and P-Pro, not L2 and HC-Pro, were able to rescue the amplification of the chimeric BYV variants. The combined expression of L1 and L2 resulted in an increased RNA accumulation compared to that of the parental BYV. Remarkably, this L1-L2 chimera exhibited reduced invasiveness and inability to move from cell to cell. Similar analyses of the BYV hybrids, in which only the papain-like domain of L-Pro was replaced with those derived from L1, L2, P-Pro, and HC-Pro, also revealed functional specialization of these domains. In subcellular-localization experiments, distinct patterns were observed for the leader proteinases of BYV, CTV, and LIYV. Taken together, these results demonstrated that, in addition to a common proteolytic activity, the leader proteinases of closteroviruses possess specialized functions in virus RNA amplification, virus invasion, and cell-to-cell movement. The phylogenetic analysis suggested that functionally distinct L1 and L2 of CTV originated by a gene duplication event.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Madhyastha Harishkumar ◽  
Yamaguchi Masatoshi ◽  
Sameshima Hiroshi ◽  
Ikenoue Tsuyomu ◽  
Maruyama Masugi

In the present investigation, we examined the effect of Hyuganatsu (Citrus tamurana) extract (HE) on skin fibroblast (TIG-119) proliferation and migration duringin vitrowound healing. HE selectively inhibited proliferation of TIG-119 cells at higher concentration (>1.0 mg/mL); at lower concentrations (0.1, 0.25, 0.5, and 0.75 mg/mL), it exhibited linear and time-dependent cell proliferation.In vitroscratch wound healing studies showed that the HE also accelerated the migration of cells towards the wounded region. Cytometric analysis demonstrated that HE extract did not alter G1/0 and S phases of cell cycle in any concentration studied; however, G2/M phases of cell cycle were significantly (P<0.05) accelerated at 0.75 mg/mL dose. RT-PCR and Western blotting analysis indicated that HE markedly overexpressed levels of Rac-1, Rho-A, and Cdc-42 mRNA and the respective proteins. Cyclin-dependent kinases (Cdk-1 and -2) gene expression activity was significantly (P<0.05) increased, but protein content decreased during treatment with HE. The induction of Cdk-1 and -2 by HE was abolished by inhibitors, transcription (DRB), and translation (CHX), implying transcriptional regulation that requiredde novoprotein synthesis.


2008 ◽  
Vol 36 (2) ◽  
pp. 149-155 ◽  
Author(s):  
W. James Nelson

Ca2+-dependent cell–cell adhesion is regulated by the cadherin family of cell adhesion proteins. Cadherins form trans-interactions on opposing cell surfaces which result in weak cell–cell adhesion. Stronger cell–cell adhesion occurs by clustering of cadherins and through changes in the organization of the actin cytoskeleton. Although cadherins were thought to bind directly to the actin cytoskeleton through cytoplasmic proteins, termed α- and β-catenin, recent studies with purified proteins indicate that the interaction is not direct, and instead an allosteric switch in α-catenin may mediate actin cytoskeleton reorganization. Organization and function of the cadherin–catenin complex are additionally regulated by phosphorylation and endocytosis. Direct studies of cell–cell adhesion has revealed that the cadherin–catenin complex and the underlying actin cytoskeleton undergo a series of reorganizations that are controlled by the Rho GTPases, Rac1 and RhoA, that result in the expansion and completion of cell–cell adhesion. In the present article, in vitro protein assembly studies and live-cell studies of de novo cell–cell adhesion are discussed in the context of how the cadherin–catenin complex and the actin cytoskeleton regulate cell–cell adhesion.


2019 ◽  
Vol 20 (1) ◽  
pp. 194 ◽  
Author(s):  
Vally Kommineni ◽  
Matthew Markert ◽  
Zhongjie Ren ◽  
Sreenath Palle ◽  
Berenice Carrillo ◽  
...  

N-glycosylation has been shown to affect the pharmacokinetic properties of several classes of biologics, including monoclonal antibodies, blood factors, and lysosomal enzymes. In the last two decades, N-glycan engineering has been employed to achieve a N-glycosylation profile that is either more consistent or aligned with a specific improved activity (i.e., effector function or serum half-life). In particular, attention has focused on engineering processes in vivo or in vitro to alter the structure of the N-glycosylation of the Fc region of anti-cancer monoclonal antibodies in order to increase antibody-dependent cell-mediated cytotoxicity (ADCC). Here, we applied the mannosidase I inhibitor kifunensine to the Nicotiana benthamiana transient expression platform to produce an afucosylated anti-CD20 antibody (rituximab). We determined the optimal concentration of kifunensine used in the infiltration solution, 0.375 µM, which was sufficient to produce exclusively oligomannose glycoforms, at a concentration 14 times lower than previously published levels. The resulting afucosylated rituximab revealed a 14-fold increase in ADCC activity targeting the lymphoma cell line Wil2-S when compared with rituximab produced in the absence of kifunensine. When applied to the cost-effective and scalable N. benthamiana transient expression platform, the use of kifunensine allows simple in-process glycan engineering without the need for transgenic hosts.


2006 ◽  
Vol 87 (9) ◽  
pp. 2621-2630 ◽  
Author(s):  
Jacques Rohayem ◽  
Katrin Jäger ◽  
Ivonne Robel ◽  
Ulrike Scheffler ◽  
Achim Temme ◽  
...  

Norovirus (NV) 3Dpol is a non-structural protein predicted to play an essential role in the replication of the NV genome. In this study, the characteristics of NV 3Dpol activity and initiation of RNA synthesis have been examined in vitro. Recombinant NV 3Dpol, as well as a 3Dpol active-site mutant were expressed in Escherichia coli and purified. NV 3Dpol was able to synthesize RNA in vitro and displayed flexibility with respect to the use of Mg2+ or Mn2+ as a cofactor. NV 3Dpol yielded two different products when incubated with synthetic RNA in vitro: (i) a double-stranded RNA consisting of two single strands of opposite polarity or (ii) the single-stranded RNA template labelled at its 3′ terminus by terminal transferase activity. Initiation of RNA synthesis occurred de novo rather than by back-priming, as evidenced by the fact that the two strands of the double-stranded RNA product could be separated, and by dissociation in time-course analysis of terminal transferase and RNA synthesis activities. In addition, RNA synthesis was not affected by blocking of the 3′ terminus of the RNA template by a chain terminator, sustaining de novo initiation of RNA synthesis. NV 3Dpol displays in vitro properties characteristic of RNA-dependent RNA polymerases, allowing the implementation of this in vitro enzymic assay for the development and validation of antiviral drugs against NV, a so far non-cultivated virus and an important human pathogen.


Sign in / Sign up

Export Citation Format

Share Document