scholarly journals Shewanella algae and Microbulbifer elongatus from marine macro-algae – isolation and characterization of agar-hydrolysing bacteria

2020 ◽  
Vol 2 (11) ◽  
Author(s):  
Keerthana Ponni Kandasamy ◽  
Radhesh Krishnan Subramanian ◽  
Radhakrishnan Srinivasan ◽  
Sengali Ragunath ◽  
G. Balaji ◽  
...  

Macro-algae are a good source of agar oligosaccharides, which can be obtained through bacterial enzymatic hydrolysis. The agarase enzyme secreted by the micro-organisms cleaves the cell wall of the algae and releases agar oligosaccharides as degradation products with various applications. Agarolytic bacteria were isolated from the marine algae Kappaphycus sp., and Sargassum sp., and studied for their agar-degrading properties. Among the 70 isolates, 2 isolates (A13 and Sg8) showed agarase activity in in vitro assays. The maximum agarolytic index was recorded in the isolate Sg8 (3.75 mm and 4.29 µg ml−1 agarase activity), followed by the isolate A13 (2.53 mm and 2.6 µg ml−1 agarase activity). Optimum agarase production of isolate Sg8 was observed at pH7 and at a temperature of 25 °C in 24–48 h, whereas for isolate A13 the optimum production was at pH7 and at a temperature of 37 °C in 48 h. The identities of the agarolytic isolates (Sg8 and A13) were confirmed based on microscopy, morphological, biochemical and molecular analysis as Shewanella algae [National Center for Biotechnology Information (NCBI) GenBank accession number MK121204.1] and Microbulbifer elongatus [NCBI GenBank accession number MK825484.1], respectively.

Microbiology ◽  
2021 ◽  
Vol 167 (4) ◽  
Author(s):  
Tânia Luz Palma ◽  
Anastasiia Shylova ◽  
Maria Clara Costa

The compound 17α-ethinylestradiol (EE2) is a synthetic oestrogen which is classified as a group 1 carcinogen by the World Health Organization. Together with other endocrine disruptor compounds, EE2 has been included in the surface water Watch List by the European Commission, since it causes severe adverse effects in ecosystems. Thus, it became a high priority to find or improve processes such as biodegradation of EE2 to completely remove this drug from the wastewater treatment plants (WWTPs). The present study aimed at the isolation of bacteria capable of degrading EE2 using environmental samples, namely a sludge from the Faro Northwest WWTP. Four isolates with ability to grow in the presence of 50 mg l−1 EE2 were obtained. The analysis of 16SrRNA gene sequences identified the isolated bacteria as Acinetobacter bouvetii, Acinetobacter kookii, Pantoea agglomerans and Shinella zoogloeoides . The results of biodegradation assays showed that Acinetobacter bouvetii , Acinetobacter kookii , Pantoea agglomerans and Shinella zoogloeoides were able to degrade 47±4 %, 55±3 %, 64±4% and 35±4 %, respectively of 13 mg l−1 EE2 after 168 h at 28 °C. To the best of our knowledge, these bacterial isolates were identified as EE2 degraders for the first time. In a preliminary experiment on the identification of metabolic products resulting from EE2 degradation products such as estrone (E1), γ-lactone compounds, 2-pentanedioic acid and 2-butenedioic acid an intermediate metabolite of the TCA cycle, were detected.


2021 ◽  
Vol 70 (9) ◽  
Author(s):  
Vidula Iyer ◽  
Janhavi Raut ◽  
Anindya Dasgupta

The pH of skin is critical for skin health and resilience and plays a key role in controlling the skin microbiome. It has been well reported that under dysbiotic conditions such as atopic dermatitis (AD), eczema, etc. there are significant aberrations of skin pH, along with a higher level of Staphylococcus aureus compared to the commensal Staphylococcus epidermidis on skin. To understand the effect of pH on the relative growth of S. epidermidis and S. aureus , we carried out simple in vitro growth kinetic studies of the individual microbes under varying pH conditions. We demonstrated that the growth kinetics of S. epidermidis is relatively insensitive to pH within the range of 5–7, while S. aureus shows a stronger pH dependence in that range. Gompertz’s model was used to fit the pH dependence of the growth kinetics of the two bacteria and showed that the equilibrium bacterial count of S. aureus was the more sensitive parameter. The switch in growth rate happens at a pH of 6.5–7. Our studies are in line with the general hypothesis that keeping the skin pH within an acidic range is advantageous in terms of keeping the skin microbiome in balance and maintaining healthy skin.


Microbiology ◽  
2021 ◽  
Vol 167 (11) ◽  
Author(s):  
Alberto Gonçalves Evangelista ◽  
Jessica Audrey Feijó Corrêa ◽  
João Vitor Garcia dos Santos ◽  
Eduardo Henrique Custódio Matté ◽  
Mônica Moura Milek ◽  
...  

The genus Salmonella is closely associated with foodborne outbreaks and animal diseases, and reports of antimicrobial resistance in Salmonella species are frequent. Several alternatives have been developed to control this pathogen, such as cell-free supernatants (CFS). Our objective here was to evaluate the use of lactic acid bacteria (LAB) CFS against Salmonella in vitro. Seventeen strains of LAB were used to produce CFS, and their antimicrobial activity was screened towards six strains of Salmonella . In addition, CFS were also pH-neutralized and/or boiled. Those with the best results were lyophilized. MICs of lyophilized CFS were 11.25–22.5 g l–1. Freeze-dried CFS were also used to supplement swine and poultry feed (11.25 g kg–1) and in vitro simulated digestion of both species was performed, with Salmonella contamination of 5×106 and 2×105 c.f.u. g−1 of swine and poultry feed, respectively. In the antimicrobial screening, all acidic CFS were able to inhibit the growth of Salmonella . After pH neutralization, Lactobacillus acidophilus Llorente, Limosilactobacillus fermentum CCT 1629, Lactiplantibacillus plantarum PUCPR44, Limosilactobacillus reuteri BioGaia, Lacticaseibacillus rhamnosus ATCC 7469 and Pediococcus pentosaceus UM116 CFS were the only strains that partially maintained their antimicrobial activity and, therefore, were chosen for lyophilization. In the simulated swine digestion, Salmonella counts were reduced ≥1.78 log c.f.u. g–1 in the digesta containing either of the CFS. In the chicken simulation, a significant reduction was obtained with all CFS used (average reduction of 0.59±0.01 log c.f.u. ml–1). In general, the lyophilized CFS of L. fermentum CCT 1629, L. rhamnosus ATCC 7469 and L. acidophilus Llorente presented better antimicrobial activity. In conclusion, CFS show potential as feed additives to control Salmonella in animal production and may be an alternative to the use of antibiotics, minimizing problems related to antimicrobial resistance.


Author(s):  
Catrina Olivera ◽  
Vuong Van Hung Le ◽  
Catherine Davenport ◽  
Jasna Rakonjac

Introduction. There is an urgent need for effective therapies against bacterial infections, especially those caused by antibiotic-resistant Gram-negative pathogens. Hypothesis. Synergistic combinations of existing antimicrobials show promise due to their enhanced efficacies and reduced dosages which can mitigate adverse effects, and therefore can be used as potential antibacterial therapy. Aim. In this study, we sought to characterize the in vitro interaction of 5-nitrofurans, vancomycin and sodium deoxycholate (NVD) against pathogenic bacteria. Methodology. The synergy of the NVD combination was investigated in terms of growth inhibition and bacterial killing using checkerboard and time-kill assays, respectively. Results. Using a three-dimensional checkerboard assay, we showed that 5-nitrofurans, sodium deoxycholate and vancomycin interact synergistically in the growth inhibition of 15 out of 20 Gram-negative strains tested, including clinically significant pathogens such as carbapenemase-producing Escherichia coli , Klebsiella pneumoniae and Acinetobacter baumannii , and interact indifferently against the Gram-positive strains tested. The time-kill assay further confirmed that the triple combination was bactericidal in a synergistic manner. Conclusion. This study demonstrates the synergistic effect of 5-nitrofurans, sodium deoxycholate and vancomycin against Gram-negative pathogens and highlights the potential of the combination as a treatment for Gram-negative and Gram-positive infections.


Microbiology ◽  
2020 ◽  
Vol 166 (5) ◽  
pp. 484-497 ◽  
Author(s):  
Alejandra Arteaga Ide ◽  
Victor M. Hernández ◽  
Liliana Medina-Aparicio ◽  
Edson Carcamo-Noriega ◽  
Lourdes Girard ◽  
...  

In bacteria, l-arginine is a precursor of various metabolites and can serve as a source of carbon and/or nitrogen. Arginine catabolism by arginase, which hydrolyzes arginine to l-ornithine and urea, is common in nature but has not been studied in symbiotic nitrogen-fixing rhizobia. The genome of the alfalfa microsymbiont Sinorhizobium meliloti 1021 has two genes annotated as arginases, argI1 (smc03091) and argI2 (sma1711). Biochemical assays with purified ArgI1 and ArgI2 (as 6His-Sumo-tagged proteins) showed that only ArgI1 had detectable arginase activity. A 1021 argI1 null mutant lacked arginase activity and grew at a drastically reduced rate with arginine as sole nitrogen source. Wild-type growth and arginase activity were restored in the argI1 mutant genetically complemented with a genomically integrated argI1 gene. In the wild-type, arginase activity and argI1 transcription were induced several fold by exogenous arginine. ArgI1 purified as a 6His-Sumo-tagged protein had its highest in vitro enzymatic activity at pH 7.5 with Ni2+ as cofactor. The enzyme was also active with Mn2+ and Co2+, both of which gave the enzyme the highest activities at a more alkaline pH. The 6His-Sumo-ArgI1 comprised three identical subunits based on the migration of the urea-dissociated protein in a native polyacrylamide gel. A Lrp-like regulator (smc03092) divergently transcribed from argI1 was required for arginase induction by arginine or ornithine. This regulator was designated ArgIR. Electrophoretic mobility shift assays showed that purified ArgIR bound to the argI1 promoter in a region preceding the predicted argI1 transcriptional start. Our results indicate that ArgI1 is the sole arginase in S. meliloti , that it contributes substantially to arginine catabolism in vivo and that argI1 induction by arginine is dependent on ArgIR.


2021 ◽  
Vol 70 (7) ◽  
Author(s):  
Souad Belkacemi ◽  
Maryam Tidjani Alou ◽  
Saber Khelaifia ◽  
Didier Raoult

To date, the axenic culture of Treponema pallidum remains a challenge in the field of microbiology despite countless attempts. Here, we conducted a comprehensive bibliographic analysis using several databases and search engines, namely Pubmed, Google scholar, Google, Web of Science and Scopus. Numerous unsuccessful empiric studies have been conducted and evaluated using as criteria dark-field microscopic observation of motile spiral shaped cells in the culture and virulence of the culture through rabbit infectivity. All of these studies failed to induce rabbit infectivity, even when deemed positive after microscopic observation leading to the misnomer of avirulent T. pallidum . In fact, this criterion was improperly chosen because not all spiral shaped cells are T. pallidum . However, these studies led to the formulation of culture media particularly favourable to the growth of several species of Treponema, including Oral Microbiology and Immunology, Zürich medium (OMIZ), Oral Treponeme Enrichment Broth (OTEB) and T-Raoult, thus allowing the increase in the number of cultivable strains of Treponema . The predicted metabolic capacities of T. pallidum show limited metabolism, also exhibited by other non-cultured and pathogenic Treponema species, in contrast to cultured Treponema species. The advent of next generation sequencing represents a turning point in this field, as the knowledge inferred from the genome can finally lead to the axenic culture of T. pallidum .


2022 ◽  
Vol 71 (1) ◽  
Author(s):  
Bailey F. Keefe ◽  
Luiz E. Bermudez

Introduction. Pulmonary infections caused by organisms of the Mycobacterium abscessus complex are increasingly prevalent in populations at risk, such as patients with cystic fibrosis, bronchiectasis and emphysema. Hypothesis. M. abscessus infection of the lung is not observed in immunocompetent individuals, which raises the possibility that the compromised lung environment is a suitable niche for the pathogen to thrive in due to the overproduction of mucus and high amounts of host cell lysis. Aim. Evaluate the ability of M. abscessus to form biofilm and grow utilizing in vitro conditions as seen in immunocompromised lungs of patients. Methodology. We compared biofilm formation and protein composition in the presence and absence of synthetic cystic fibrosis medium (SCFM) and evaluated the bacterial growth when exposed to human DNA. Results. M. abscessus is capable of forming biofilm in SCFM. By eliminating single components found in the medium, it became clear that magnesium works as a signal for the biofilm formation, and chelation of the divalent cations resulted in the suppression of biofilm formation. Investigation of the specific proteins expressed in the presence of SCFM and in the presence of SCFM lacking magnesium revealed many different proteins between the conditions. M. abscessus also exhibited growth in SCFM and in the presence of host cell DNA, although the mechanism of DNA utilization remains unclear. Conclusions. In vitro conditions mimicking the airways of patients with cystic fibrosis appear to facilitate M. abscessus establishment of infection, and elimination of magnesium from the environment may affect the ability of the pathogen to establish infection.


2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2884-2890 ◽  
Author(s):  
Jin Ho Kim ◽  
Bo Hyun Choi ◽  
Minho Jo ◽  
Sun Chang Kim ◽  
Pyung Cheon Lee

Taxonomic studies were performed on an agarase-producing strain, designated WV33T, isolated from faeces of Antarctic penguins. Cells of strain WV33T were Gram-staining-negative, strictly aerobic, orange and rod-shaped. Strain WV33T displayed agarase activity and was able to utilize galactose as a sole carbon source. 16S rRNA gene sequence analysis revealed that strain WV33T was closely related to Flavobacterium algicola TC2T (98.0 % similarity), F. frigidarium ATCC 700810T (96.9 %) and F. frigoris LMG 21922T (96.1 %). The predominant cellular fatty acids were iso-C15 : 1 G, iso-C15 : 0, C15 : 0, C16 : 0 and summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1ω7c). Menaquinone 6 (MK-6) was the sole quinone identified, and the major pigment was zeaxanthin. The major polar lipid was phosphatidylethanolamine. DNA–DNA relatedness of strain WV33T with respect to its closest phylogenetic neighbours was 25 % for F. algicola NBRC 102673T, 23 % for F. frigidarium DSM 17623T and 21 % for F. frigoris DSM 15719T. The DNA G+C content of strain WV33T was 37±0.6 mol%. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain WV33T is concluded to represent a novel species of the genus Flavobacterium , for which the name Flavobacterium faecale sp. nov. is proposed. The type strain is WV33T ( = KCTC 32457T = CECT 8384T).


Author(s):  
Laura A. Wolter ◽  
Shota Suenami ◽  
Ryo Miyazaki

The gut of honey bees is characterized by a stable and relatively simple community of bacteria, consisting of seven to ten phylotypes. Two closely related honey bees, Apis mellifera (western honey bee) and Apis cerana (eastern honey bee), show a largely comparable occurrence of those phylotypes, but a distinct set of bacterial species and strains within each bee species. Here, we describe the isolation and characterization of Ac13T, a new species within the rare proteobacterial genus Frischella from A. cerana japonica Fabricius. Description of Ac13T as a new species is supported by low identity of the 16S rRNA gene sequence (97.2 %), of the average nucleotide identity based on orthologous genes (77.5 %) and digital DNA–DNA hybridization relatedness (24.7 %) to the next but far related type strain Frischella perrara PEB0191T, isolated from A. mellifera. Cells of Ac13T are mesophilic and have a mean length of 2–4 µm and a width of 0.5 µm. Optimal growth was achieved in anoxic conditions, whereas growth was not observed in oxic conditions and strongly reduced in microaerophilic environment. Strain Ac13T shares several features with other members of the Orbaceae , such as the major fatty acid profile, the respiratory quinone type and relatively low DNA G+C content, in accordance with its evolutionary relationship. Unlike F. perrara , strain Ac13T is susceptible to a broad range of antibiotics, which could be indicative for an antibiotic-free A. cerana bee keeping. In conclusion, we propose strain Ac13T as a novel species for which we propose the name Frischella japonica sp. nov. with the type strain Ac13T (=NCIMB 15259=JCM 34075).


Microbiology ◽  
2020 ◽  
Vol 166 (10) ◽  
pp. 909-917 ◽  
Author(s):  
Sophie P. Bennett ◽  
Maria J. Torres ◽  
Manuel J. Soriano-Laguna ◽  
David J. Richardson ◽  
Andrew J. Gates ◽  
...  

Nitrous oxide (N2O) is a potent greenhouse gas that is produced naturally as an intermediate during the process of denitrification carried out by some soil bacteria. It is consumed by nitrous oxide reductase (N2OR), the terminal enzyme of the denitrification pathway, which catalyses a reduction reaction to generate dinitrogen. N2OR contains two important copper cofactors (CuA and CuZ centres) that are essential for activity, and in copper-limited environments, N2OR fails to function, contributing to rising levels of atmospheric N2O and a major environmental challenge. Here we report studies of nosX, one of eight genes in the nos cluster of the soil dwelling α-proteobaterium Paraccocus denitrificans. A P. denitrificans ΔnosX deletion mutant failed to reduce N2O under both copper-sufficient and copper-limited conditions, demonstrating that NosX plays an essential role in N2OR activity. N2OR isolated from nosX-deficient cells was found to be unaffected in terms of the assembly of its copper cofactors, and to be active in in vitro assays, indicating that NosX is not required for the maturation of the enzyme; in particular, it plays no part in the assembly of either of the CuA and CuZ centres. Furthermore, quantitative Reverse Transcription PCR (qRT-PCR) studies showed that NosX does not significantly affect the expression of the N2OR-encoding nosZ gene. NosX is a homologue of the FAD-binding protein ApbE from Pseudomonas stutzeri , which functions in the flavinylation of another N2OR accessory protein, NosR. Thus, it is likely that NosX is a system-specific maturation factor of NosR, and so is indirectly involved in maintaining the reaction cycle of N2OR and cellular N2O reduction.


Sign in / Sign up

Export Citation Format

Share Document