Targeting cap-dependent translation to inhibit Chikungunya virus replication: selectivity of p38 MAPK inhibitors to virus-infected cells due to autophagy-mediated down regulation of phospho-ERK

2021 ◽  
Vol 102 (7) ◽  
Author(s):  
Prashant Mudaliar ◽  
Parvanendhu Pradeep ◽  
Rachy Abraham ◽  
Easwaran Sreekumar

The 5′ capped, message-sense RNA genome of Chikungunya virus (CHIKV) utilizes the host cell machinery for translation. Translation is regulated by eIF2 alpha at the initiation phase and by eIF4F at cap recognition. Translational suppression by eIF2 alpha phosphorylation occurs as an early event in many alphavirus infections. We observe that in CHIKV-infected HEK293 cells, this occurs as a late event, by which time the viral replication has reached an exponential phase, implying its minimal role in virus restriction. The regulation by eIF4F is mediated through the PI3K-Akt-mTOR, p38 MAPK and RAS-RAF-MEK-ERK pathways. A kinetic analysis revealed that CHIKV infection did not modulate AKT phosphorylation, but caused a significant reduction in p38 MAPK phosphorylation. It caused degradation of phospho-ERK 1/2 by increased autophagy, leaving the PI3K-Akt-mTOR and p38 MAPK pathways for pharmacological targeting. mTOR inhibition resulted in moderate reduction in viral titre, but had no effect on CHIKV E2 protein expression, indicating a minimal role of the mTOR complex in virus replication. Inhibition of p38 MAPK using SB202190 caused a significant reduction in viral titre and CHIKV E2 and nsP3 protein expression. Furthermore, inhibiting the two pathways together did not offer any synergism, indicating that inhibiting the p38 MAPK pathway alone is sufficient to cause restriction of CHIKV replication. Meanwhile, in uninfected cells the fully functional RAS-RAF-MEK-ERK pathway can circumvent the effect of p38 MAPK inhibition on cap-dependent translation. Thus, our results show that host-directed antiviral strategies targeting cellular p38 MAPK are worth exploring against Chikungunya as they could be selective against CHIKV-infected cells with minimal effects on uninfected host cells.

2015 ◽  
Vol 90 (2) ◽  
pp. 873-886 ◽  
Author(s):  
Jesus A. Silvas ◽  
Vsevolod L. Popov ◽  
Adriana Paulucci-Holthauzen ◽  
Patricia V. Aguilar

ABSTRACTSevere fever with thrombocytopenia syndrome (SFTS) virus is a newly recognized member of the genusPhlebovirusin the familyBunyaviridae. The virus was isolated from patients presenting with hemorrhagic manifestations and an initial case fatality rate of 12 to 30% was reported. Due to the recent emergence of this pathogen, there is limited knowledge on the molecular virology of SFTS virus. Recently, we reported that the SFTS virus NSs protein inhibited the activation of the beta interferon (IFN-β) promoter. Furthermore, we also found that SFTS virus NSs relocalizes key components of the IFN response into NSs-induced cytoplasmic structures. Due to the important role these structures play during SFTS virus replication, we conducted live cell imaging studies to gain further insight into the role and trafficking of these cytoplasmic structures during virus infection. We found that some of the SFTS virus NSs-positive cytoplasmic structures were secreted to the extracellular space and endocytosed by neighboring cells. We also found that these secreted structures isolated from NSs-expressing cells and SFTS virus-infected cells were positive for the viral protein NSs and the host protein CD63, a protein associated with extracellular vesicles. Electron microscopy studies also revealed that the isolated CD63-immunoprecipitated extracellular vesicles produced during SFTS virus infection contained virions. The virions harbored within these structures were efficiently delivered to uninfected cells and were able to sustain SFTS virus replication. Altogether, these results suggest that SFTS virus exploits extracellular vesicles to mediate virus receptor-independent transmission to host cells and open the avenue for novel therapeutic strategies against SFTS virus and related pathogens.IMPORTANCESFTS virus is novel bunyavirus associated with hemorrhagic fever illness. Currently, limited information is available about SFTS virus. In the present study, we demonstrated that extracellular vesicles produced by SFTS virus-infected cells harbor infectious virions. We sought to determine whether these “infectious” extracellular vesicles can mediate transmission of the virus and confirmed that the SFTS virions were efficiently transported by these secreted structures into uninfected cells and were able to sustain efficient replication of SFTS virus. These results have significant impact on our understanding of how the novel tick-borne phleboviruses hijack cellular machineries to establish infection and point toward a novel mechanism for virus replication among arthropod-borne viruses.


2020 ◽  
Author(s):  
Himadri Nath ◽  
Keya Basu ◽  
Abhishek De ◽  
Subhajit Biswas

AbstractDengue is the most important arboviral disease inflicting mankind. This mosquito-borne Flavivirus causes mild to severe dengue fever which in some cases leads to life-threatening conditions namely, dengue haemorrhagic fever and dengue shock syndrome. Annual infection is estimated at 390 million globally with 96 million manifesting clinically. So, ≥80% infections are asymptomatic and self-limiting. Dengue virus (DV) non-structural protein 1 (NS1) is a proven virotoxin abundantly present in the victim’s blood. We found that DV-infected or only NS1-expressing cells both can induce Cleaved Caspase3, due to antiviral response of host cells. NS1-transfected cells also showed nuclear damage and significant levels of DNA breaks suggestive of ensuing apoptosis. So, it was established that NS1 alone is capable of causing apoptosis. Surprisingly, despite secreting similar amount of soluble NS1, the DV-infected cells showed intact nuclear morphology and background levels of DNA nicks. These observations suggested that DV downregulates apoptosis of infected cells, which is a viral strategy against host defence. Furthermore, DV-infected cells counteracted Camptothecin-induced apoptotic DNA break. DV-infection was also found to keep the infected cells metabolically more active than only NS1 expressing cells. So, DV bypasses cellular defence against virus i.e. apoptosis by counteracting cellular DNA break and keeps the infected cells metabolically active to support virus replication for longer period which eventually results in high virus titer in circulation. Our findings reveal another level of intricacy involving dengue virus-host interactions and perhaps explain why ≥80% DV infections are asymptomatic/self-limiting despite the presence of NS1 virotoxin in infected cells.Author SummaryNS1, a virotoxin, abundantly present in Dengue patients blood, is a major player behind disease patho-biogenesis including plasma leakage. Despite the presence of NS1 in blood, Dengue is asymptomatic and self-limiting in more than 80% dengue virus (DV) infected people. We investigated this observation and found that plasmid-mediated NS1 expression and secretion in cells are sufficient to cause programmed cell death (apoptosis) and associated cellular DNA breakage. However, cells infected with dengue virus and secreting equivalent amounts of NS1 didn’t exhibit apoptotic DNA breakage. Consequently, DV-infected cells showed better survival than cells in which only NS1 was transiently expressed by transfection with expression plasmid. We also found that DV can even prevent chemical induced apoptotic DNA damage in infected host cells. So, DV bypasses host antiviral defence i.e. apoptosis by counteracting cellular DNA breakages and keeps the infected cells metabolically active to prolong virus replication.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
M. J. Schultz ◽  
A. L. Tan ◽  
C. N. Gray ◽  
S. Isern ◽  
S. F. Michael ◽  
...  

ABSTRACTMosquito-transmitted viruses are spread globally and present a great risk to human health. Among the many approaches investigated to limit the diseases caused by these viruses are attempts to make mosquitos resistant to virus infection. Coinfection of mosquitos with the bacteriumWolbachia pipientisfrom supergroup A is a recent strategy employed to reduce the capacity for major vectors in theAedesmosquito genus to transmit viruses, including dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus (ZIKV). Recently, a supergroup BWolbachia wStri, isolated fromLaodelphax striatellus, was shown to inhibit multiple lineages of ZIKV inAedes albopictuscells. Here, we show thatwStri blocks the growth of positive-sense RNA viruses DENV, CHIKV, ZIKV, and yellow fever virus by greater than 99.9%.wStri presence did not affect the growth of the negative-sense RNA viruses LaCrosse virus or vesicular stomatitis virus. Investigation of the stages of the ZIKV life cycle inhibited bywStri identified two distinct blocks in viral replication. We found a reduction of ZIKV entry intowStri-infected cells. This was partially rescued by the addition of a cholesterol-lipid supplement. Independent of entry, transfected viral genome was unable to replicate inWolbachia-infected cells. RNA transfection and metabolic labeling studies suggested that this replication defect is at the level of RNA translation, where we saw a 66% reduction in mosquito protein synthesis inwStri-infected cells. This study’s findings increase the potential for application ofwStri to block additional arboviruses and also identify specific blocks in viral infection caused byWolbachiacoinfection.IMPORTANCEDengue, Zika, and yellow fever viruses are mosquito-transmitted diseases that have spread throughout the world, causing millions of infections and thousands of deaths each year. Existing programs that seek to contain these diseases through elimination of the mosquito population have so far failed, making it crucial to explore new ways of limiting the spread of these viruses. Here, we show that introduction of an insect symbiont,Wolbachia wStri, into mosquito cells is highly effective at reducing yellow fever virus, dengue virus, Zika virus, and Chikungunya virus production. Reduction of virus replication was attributable to decreases in entry and a strong block of virus gene expression at the translational level. These findings expand the potential use ofWolbachia wStri to block viruses and identify two separate steps for limiting virus replication in mosquitos that could be targeted via microbes or other means as an antiviral strategy.


2019 ◽  
Author(s):  
Andrew J. McNamara ◽  
Pranav Danthi

ABSTRACTViruses commonly antagonize innate immune pathways that are primarily driven by Nuclear Factor-κB (NF-κB), Interferon Regulatory Factor (IRF) and Signal Transducer and Activator of Transcription (STAT) family of transcription factors. Such a strategy allows viruses to evade immune surveillance and maximize their replication. Using an unbiased RNA-seq based approach to measure gene expression induced by transfected viral genomic RNA (vgRNA) and reovirus infection, we discovered that mammalian reovirus inhibits host cell innate immune signaling. We found that while vgRNA and reovirus infection both induce a similar IRF dependent gene expression program, gene expression driven by the NF-κB family of transcription factors is lower in infected cells. Potent agonists of NF-κB, such as Tumor Necrosis Factor alpha (TNFα) and vgRNA, failed to induce NF-κB dependent gene expression in infected cells. We demonstrate that NF-κB signaling is blocked due to loss of critical members of the Inhibitor of KappaB Kinase (IKK) complex, NF-κB Essential MOdifier (NEMO) and IKKβ. The loss of the IKK complex components prevents nuclear translocation and phosphorylation of NF-κB, thereby preventing gene expression. Our studies demonstrate that reovirus infection selectively blocks NF-κB, likely to counteract its antiviral effects and promote efficient viral replication.IMPORTANCEHost cells mount a response to curb virus replication in infected cells and prevent infection of neighboring, as yet uninfected cells. The NF-κB family of proteins is important for the cell to mediate this response. In this study, we show that in cells infected with mammalian reovirus, NF-κB is inactive. Further, we demonstrate that NF-κB is rendered inactive because virus infection results in reduced levels of upstream intermediaries (called IKKs) that are needed for NF-κB function. Based on previous evidence that active NF-κB limits reovirus infection, we conclude that inactivating NF-κB is a viral strategy to produce a cellular environment that is favorable for virus replication.


2018 ◽  
Vol 5 (12) ◽  
Author(s):  
Jesse Hwang ◽  
Alfred Jiang ◽  
Erol Fikrig

Abstract Chikungunya virus (CHIKV), an alphavirus spread by Aedes spp. mosquitos, causes severe inflammation and joint pain, progressing to a chronic arthralgic state in a subset of patients. Due to recent global epidemics of CHIKV and the potential for related viruses to cause outbreaks, multiple approaches to combat these pathogens are of interest. We report that SR9009, a synthetic agonist of nuclear receptors Rev-erb α/β, inhibits replication of multiple alphaviruses (CHIKV and O’nyong’nyong virus) mainly by suppressing structural protein synthesis, although viral RNA accumulation is relatively unimpeded. Furthermore, SR9009 reduces the inflammatory response in cultured murine macrophages exposed to alphavirus-infected cells.


2019 ◽  
Vol 94 (4) ◽  
Author(s):  
Nitish Boodhoo ◽  
Nitin Kamble ◽  
Shayan Sharif ◽  
Shahriar Behboudi

ABSTRACT Viruses may hijack glycolysis, glutaminolysis, or fatty acid β-oxidation of host cells to provide the energy and macromolecules required for efficient viral replication. Marek’s disease virus (MDV) causes a deadly lymphoproliferative disease in chickens and modulates metabolism of host cells. Metabolic analysis of MDV-infected chicken embryonic fibroblasts (CEFs) identified elevated levels of metabolites involved in glutamine catabolism, such as glutamic acid, alanine, glycine, pyrimidine, and creatine. In addition, our results demonstrate that glutamine uptake is elevated by MDV-infected cells in vitro. Although glutamine, but not glucose, deprivation significantly reduced cell viability in MDV-infected cells, both glutamine and glucose were required for virus replication and spread. In the presence of minimum glutamine requirements based on optimal cell viability, virus replication was partially rescued by the addition of the tricarboxylic acid (TCA) cycle intermediate, α-ketoglutarate, suggesting that exogenous glutamine is an essential carbon source for the TCA cycle to generate energy and macromolecules required for virus replication. Surprisingly, the inhibition of carnitine palmitoyltransferase 1a (CPT1a), which is elevated in MDV-infected cells, by chemical (etomoxir) or physiological (malonyl-CoA) inhibitors, did not reduce MDV replication, indicating that MDV replication does not require fatty acid β-oxidation. Taken together, our results demonstrate that MDV infection activates anaplerotic substrate from glucose to glutamine to provide energy and macromolecules required for MDV replication, and optimal MDV replication occurs when the cells do not depend on mitochondrial β-oxidation. IMPORTANCE Viruses can manipulate host cellular metabolism to provide energy and essential biosynthetic requirements for efficient replication. Marek’s disease virus (MDV), an avian alphaherpesvirus, causes a deadly lymphoma in chickens and hijacks host cell metabolism. This study provides evidence for the importance of glycolysis and glutaminolysis, but not fatty acid β-oxidation, as an essential energy source for the replication and spread of MDV. Moreover, it suggests that in MDV infection, as in many tumor cells, glutamine is used for generation of energetic and biosynthetic requirements of the MDV infection, while glucose is used biosynthetically.


2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Andrew J. McNamara ◽  
Pranav Danthi

ABSTRACT Viruses commonly antagonize innate immune pathways that are primarily driven by nuclear factor kappa B (NF-κB), interferon regulatory factor (IRF), and the signal transducer and activator of transcription proteins (STAT) family of transcription factors. Such a strategy allows viruses to evade immune surveillance and maximize their replication. Using an unbiased transcriptome sequencing (RNA-seq)-based approach to measure gene expression induced by transfected viral genomic RNA (vgRNA) and reovirus infection, we discovered that mammalian reovirus inhibits host cell innate immune signaling. We found that, while vgRNA and reovirus infection both induce a similar IRF-dependent gene expression program, gene expression driven by the NF-κB family of transcription factors is lower in infected cells. Potent agonists of NF-κB such as tumor necrosis factor alpha (TNF-α) and vgRNA failed to induce NF-κB-dependent gene expression in infected cells. We demonstrate that NF-κB signaling is blocked due to loss of critical members of the inhibitor of kappa B kinase (IKK) complex, NF-κB essential modifier (NEMO), and IKKβ. The loss of the IKK complex components prevents nuclear translocation and phosphorylation of NF-κB, thereby preventing gene expression. Our study demonstrates that reovirus infection selectively blocks NF-κB, likely to counteract its antiviral effects and promote efficient viral replication. IMPORTANCE Host cells mount a response to curb virus replication in infected cells and prevent spread of virus to neighboring, as yet uninfected, cells. The NF-κB family of proteins is important for the cell to mediate this response. In this study, we show that in cells infected with mammalian reovirus, NF-κB is inactive. Further, we demonstrate that NF-κB is rendered inactive because virus infection results in reduced levels of upstream intermediaries (called IKKs) that are needed for NF-κB function. Based on previous evidence that active NF-κB limits reovirus infection, we conclude that inactivating NF-κB is a viral strategy to produce a cellular environment that is favorable for virus replication.


2021 ◽  
Vol 22 (9) ◽  
pp. 4823
Author(s):  
María Fernanda González ◽  
Paula Díaz ◽  
Alejandra Sandoval-Bórquez ◽  
Daniela Herrera ◽  
Andrew F. G. Quest

Extracellular vesicles (EVs) are cell-derived vesicles important in intercellular communication that play an essential role in host-pathogen interactions, spreading pathogen-derived as well as host-derived molecules during infection. Pathogens can induce changes in the composition of EVs derived from the infected cells and use them to manipulate their microenvironment and, for instance, modulate innate and adaptive inflammatory immune responses, both in a stimulatory or suppressive manner. Gastric cancer is one of the leading causes of cancer-related deaths worldwide and infection with Helicobacter pylori (H. pylori) is considered the main risk factor for developing this disease, which is characterized by a strong inflammatory component. EVs released by host cells infected with H. pylori contribute significantly to inflammation, and in doing so promote the development of disease. Additionally, H. pylori liberates vesicles, called outer membrane vesicles (H. pylori-OMVs), which contribute to atrophia and cell transformation in the gastric epithelium. In this review, the participation of both EVs from cells infected with H. pylori and H. pylori-OMVs associated with the development of gastric cancer will be discussed. By deciphering which functions of these external vesicles during H. pylori infection benefit the host or the pathogen, novel treatment strategies may become available to prevent disease.


Sign in / Sign up

Export Citation Format

Share Document