scholarly journals Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates

2010 ◽  
Vol 59 (5) ◽  
pp. 511-520 ◽  
Author(s):  
Thomas S. Murray ◽  
Michel Ledizet ◽  
Barbara I. Kazmierczak

Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen capable of acutely infecting or persistently colonizing susceptible hosts. P. aeruginosa colonizes surfaces in vitro by either biofilm formation or swarming motility. The choice of behaviour is influenced by the physical properties of the surface and specific nutrient availability, and subject to regulatory networks that also govern type 2 and type 3 protein secretion. Biofilm formation by clinical isolates has been well-studied. However, the swarming behaviour of human isolates has not been extensively analysed. We collected isolates from 237 hospitalized patients without cystic fibrosis and analysed motility and secretion phenotypes of each isolate. We found biofilm formation and swarming to be negatively associated, while swarming was positively associated with the secretion of both proteases and type 3 exoenzymes. Most isolates were capable of type 3 secretion and biofilm formation, even though these traits are considered to favour distinct modes of pathogenesis. Our data demonstrate that while clinical isolates display diverse motility, biofilm and secretion phenotypes, many of the predicted relationships between swarming motility and other phenotypes observed in laboratory strains also hold true for bacteria isolated from human patients.

2021 ◽  
pp. 1-8
Author(s):  
Soheir A.A. Hagras ◽  
Alaa El-Dien M.S. Hosny ◽  
Omneya M. Helmy ◽  
Mounir M. Salem-Bekhit ◽  
Faiyaz Shakeel ◽  
...  

This study investigated the effect of cefepime at sub-minimum inhibitory concentrations (sub-MICs) on in vitro biofilm formation (BF) by clinical isolates of Pseudomonas aeruginosa. The effect of cefepime at sub-MIC levels (½–1/256 MIC) on in vitro BF by six clinical isolates of P. aeruginosa was phenotypically assessed following 24 and 48 h of challenge using the tissue culture plate (TCP) assay. Quantitative real-time polymeric chain reaction (qRT-PCR) was employed to observe the change in expression of three biofilm-related genes, namely, a protease-encoding gene (lasA), fimbrial protein-encoding gene (cupA1), and alginate-encoding gene (algC), in a weak biofilm-producing strain of P. aeruginosa following 24 and 48 h of challenge with sub-MICs of cefepime. The BF morphology in response to cefepime was imaged using scanning electron microscopy (SEM). The TCP assay showed strain-, time-, and concentration-dependent changes in in vitro BF in P. aeruginosa following challenge with sub-MICs of cefepime, with a profound increase in strains with inherently no or weak biofilm-producing ability. RT-PCR revealed time-dependent upregulation in the expression of the investigated genes following challenge with ½ and ¼ MIC levels, as confirmed by SEM. Cefepime at sub-MICs could upregulate the expression of BF-related genes and enhance BF by P. aeruginosa clinical isolates.


Author(s):  
Shannon R Coleman ◽  
Daniel Pletzer ◽  
Robert E W Hancock

Abstract Swarming motility in Pseudomonas aeruginosa is a multicellular adaptation induced by semisolid medium with amino acids as a nitrogen source. By phenotypic screening, we differentiated swarming from other complex adaptive phenotypes, such as biofilm formation, swimming and twitching, by identifying a swarming-specific mutant in ptsP, a metabolic regulator. This swarming-deficient mutant was tested in an acute murine skin abscess infection model. Bacteria were recovered at significantly lower numbers from organs of mice infected with the ∆ptsP mutant. We also tested the synthetic peptide 1018 for activity against different motilities and efficacy in vivo. Treatment with 1018 mimicked the phenotype of the ∆ptsP mutant in vitro, as swarming was inhibited at low concentrations (<2 μg/mL) but not swimming or twitching, and in vivo, as mice had a reduced bacterial load recovered from organs. Therefore, PtsP functions as a regulator of swarming, which in turn contributes to dissemination and colonization in vivo.


Author(s):  
Delaney Burnard ◽  
Gemma Robertson ◽  
Andrew Henderson ◽  
Caitlin Falconer ◽  
Michelle J. Bauer ◽  
...  

Cefiderocol is a cephalosporin designed to treat multidrug resistant Gram-negative infections. By forming a chelated complex with ferric iron, cefiderocol is transported into the periplasmic space via bacterial iron transport systems and primarily binds to penicillin-binding protein 3 (PBP3) to inhibit peptidoglycan synthesis. This mode of action results in cefiderocol having greater in vitro activity against many Gram-negative bacilli than currently used carbapenems, β-lactam/β-lactamase inhibitor combinations, and cephalosporins. Thus, we investigated the in vitro activity of cefiderocol against a total of 246 clinical isolates of Burkholderia pseudomallei from Queensland, Australia. The collection was comprised primarily of bloodstream (56.1%), skin and soft tissue (16.3%) and respiratory isolates (15.9%). Minimum inhibitory concentrations (MIC) of cefiderocol ranged from ≤0.03 to 16 mg/L, where the MIC90 was 0.125 mg/L. Based upon CLSI clinical breakpoints for cefiderocol against Pseudomonas aeruginosa, Acinetobacter baumannii and Stenotrophomonas maltophilia, three isolates (1.2%) would be classified as non-susceptible (MIC >4 mg/L). Using EUCAST non-species specific (PK/PD) clinical breakpoints, or those set for Pseudomonas aeruginosa, four isolates (1.6%) would be resistant (MIC >2 mg/L). Further testing for co-resistance to meropenem, ceftazidime, trimethoprim-sulfamethoxazole, amoxicillin-clavulanate and doxycycline was performed on the four isolates with elevated cefiderocol MICs (>2 mg/L), all isolates exhibited resistance to amoxicillin-clavulanic acid, while three isolates also displayed resistance to at least one other antimicrobial. Cefiderocol was found to be highly active in vitro against B. pseudomallei primary clinical isolates. This compound shows great potential for the treatment of melioidosis in endemic countries and should be explored further.


1997 ◽  
Vol 41 (11) ◽  
pp. 2586-2588 ◽  
Author(s):  
R C Owens ◽  
M A Banevicius ◽  
D P Nicolau ◽  
C H Nightingale ◽  
R Quintiliani

The microdilution checkerboard technique was utilized to distinguish synergistic activity between tobramycin and four beta-lactams: piperacillin-tazobactam, ticarcillin-clavulanate, ceftazidime, and ceftriaxone. Beta-lactam-aminoglycoside combinations were tested against 75 clinical isolates of Pseudomonas aeruginosa, Acinetobacter baumanii, Citrobacterfreundii, Serratia marcescens, and Enterobacter cloacae. Despite in vitro susceptibilities, all isolates demonstrated either synergism or indifference; no antagonism was observed. Against pathogenic gram-negative nosocomial isolates, a greater percentage of synergy was consistently observed with combination regimens containing tobramycin and piperacillin-tazobactam or ticarcillin-clavulanate than with the cephalosporin-containing regimens.


2011 ◽  
Vol 56 (2) ◽  
pp. 1128-1132 ◽  
Author(s):  
Lucía Fernández ◽  
Elena B. M. Breidenstein ◽  
Diana Song ◽  
Robert E. W. Hancock

ABSTRACTPseudomonas aeruginosapossesses complex regulatory networks controlling virulence and survival under adverse conditions, including antibiotic pressure, which are interconnected and share common regulatory proteins. Here, we screen a panel of 13 mutants defective in intracellular proteases and demonstrate that, in addition to the known alterations in Lon and AsrA mutants, mutation of three protease-related proteins PfpI, ClpS, and ClpP differentially affected antibiotic resistance, swarming motility, and biofilm formation.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S858-S858
Author(s):  
Monica Maria Rojas Rojas ◽  
Catalina López ◽  
Jaime Ruiz ◽  
Jacquleine Pavía ◽  
Jose Oñate ◽  
...  

Abstract Background The Study for Monitoring Antimicrobial Resistance Trends (SMART) is a worldwide initiative to monitor in vitro susceptibility of clinical Gram-negative isolates to several antimicrobial agents. Surveillance initiatives are essential to provide real-world evidence to support local guidelines development. Colombia has participated since 2012 with isolates from complicated intrabdominal infections (cIAI), complicated urinary tract infections (cUTI) and respiratory tract infections (RTI). This study describes resistant patterns of Escherichia coli (Eco), Klebsiella pneumoniae (Kpn) and Pseudomonas aeruginosa (Pae) clinical isolates collected in Colombian hospitals in a 2 years period (2017–2018). Methods Isolates from patients with cIAI, cUTI and RTI were collected. Identification confirmation was done in central laboratory. Minimum inhibitory concentrations (MIC) were performed by broth microdilution and interpreted according to 2018 CLSI guidelines, same criteria for Extended-spectrum β-lactamase (ESBL) classification. The antimicrobial activity was evaluated for aztreonam (ATM), ceftolozane/tazobactam (C/T), ceftazidime (CAZ), colistin (COL), ertapenem (ETP), cefepime (FEP), imipenem (IMP), meropenem (MEM) and piperacillin–tazobactam (TZP). Results During 2017–2018, 1492 isolates were collected. The main organism was Eco (51%) followed by Kpn (29%) and Pae (20%). In vitro susceptibility activity is presented in Table 1. COL, C/T, ETP, MEM and IPM exhibited over 95% susceptibility in Eco. ESBL prevalence was 18% for Eco (53/314) and 22% for Kpn (36/165). COL and C/T were the most active agents against Pae isolates. For Kpn, MIC50/90 values were: MEM (0.12 / 8), C/T (0.5 / 8) and for TZP (8 / > 64), meanwhile for Pae were MEM (0.5 / 32), C/T (0.5 / 32) and for TZP (8 / > 64). Conclusion Continued antimicrobial resistance surveillance initiatives are critical to guide the empiric treatments decision in a multidrug resistance era. This study shows that Ceftolozane/Tazobactam, MEM and COL have the best susceptibility profile against Eco, Kpn and Pae of cIAI, cUTI and RTI cases in Colombia. The C/T susceptibility rates and low MIC distribution provide evidence to support its use as a non-carbapenem therapeutic alternative for Gram-negative infections. Disclosures All authors: No reported disclosures.


2020 ◽  
Vol 65 (1) ◽  
pp. e01726-20
Author(s):  
Yang Yang ◽  
Yan Guo ◽  
Dandan Yin ◽  
Yonggui Zheng ◽  
Shi Wu ◽  
...  

ABSTRACTThis study evaluated the in vitro activity of cefepime-zidebactam in comparison with that of ceftazidime-avibactam and other comparators against clinically significant Gram-negative bacillus isolates. A total of 3,400 nonduplicate Gram-negative clinical isolates were collected from 45 medical centers across China in the CHINET Program in 2018, including Enterobacterales (n = 2,228), Pseudomonas aeruginosa (n = 657), and Acinetobacter baumannii (n = 515). The activities of cefepime-zidebactam and 20 comparators were determined by broth microdilution as recommended by the Clinical and Laboratory Standards Institute. Cefepime-zidebactam demonstrated potent activity against almost all Enterobacterales (MIC50/90, 0.125/1 mg/liter) and good activity against P. aeruginosa (MIC50/90, 2/8 mg/liter). Among the 373 carbapenem-resistant Enterobacteriaceae isolates, 57.3% (213/373) and 15.3% (57/373) were positive for blaKPC-2 and blaNDM, respectively. Cefepime-zidebactam showed a MIC of ≤2 mg/liter for 92.0% (196/213) of blaKPC-2 producers and 79.7% (47/59) of blaNDM producers. Ceftazidime-avibactam showed good in vitro activity against Enterobacterales (MIC50/90, 0.25/2 mg/liter; 94.0% susceptible) and P. aeruginosa (MIC50/90, 4/16 mg/liter; 86.9% susceptible). Ceftazidime-avibactam was active against 9.1% of carbapenem-resistant Escherichia coli isolates (63.6% were blaNDM producers) and 84.6% of Klebsiella pneumoniae isolates (74.3% were blaKPC producers). Most (90.1%) blaKPC-2 producers were susceptible to ceftazidime-avibactam. Cefepime-zidebactam demonstrated limited activity (MIC50/90, 16/32 mg/liter) against the 515 A. baumannii isolates (79.2% were carbapenem resistant), and ceftazidime-avibactam was less active (MIC50/90, 64/>64 mg/liter). Cefepime-zidebactam was highly active against clinical isolates of Enterobacterales and P. aeruginosa, including blaKPC-2-positive Enterobacterales and blaNDM-positive Enterobacterales and carbapenem-resistant P. aeruginosa. And ceftazidime-avibactam was highly active against blaKPC-2-positive Enterobacterales and carbapenem-resistant P. aeruginosa.


2007 ◽  
Vol 189 (22) ◽  
pp. 8165-8178 ◽  
Author(s):  
Sherry L. Kuchma ◽  
Kimberly M. Brothers ◽  
Judith H. Merritt ◽  
Nicole T. Liberati ◽  
Frederick M. Ausubel ◽  
...  

ABSTRACT The intracellular signaling molecule, cyclic-di-GMP (c-di-GMP), has been shown to influence bacterial behaviors, including motility and biofilm formation. We report the identification and characterization of PA4367, a gene involved in regulating surface-associated behaviors in Pseudomonas aeruginosa. The PA4367 gene encodes a protein with an EAL domain, associated with c-di-GMP phosphodiesterase activity, as well as a GGDEF domain, which is associated with a c-di-GMP-synthesizing diguanylate cyclase activity. Deletion of the PA4367 gene results in a severe defect in swarming motility and a hyperbiofilm phenotype; thus, we designate this gene bifA, for biofilm formation. We show that BifA localizes to the inner membrane and, in biochemical studies, that purified BifA protein exhibits phosphodiesterase activity in vitro but no detectable diguanylate cyclase activity. Furthermore, mutational analyses of the conserved EAL and GGDEF residues of BifA suggest that both domains are important for the observed phosphodiesterase activity. Consistent with these data, the ΔbifA mutant exhibits increased cellular pools of c-di-GMP relative to the wild type and increased synthesis of a polysaccharide produced by the pel locus. This increased polysaccharide production is required for the enhanced biofilm formed by the ΔbifA mutant but does not contribute to the observed swarming defect. The ΔbifA mutation also results in decreased flagellar reversals. Based on epistasis studies with the previously described sadB gene, we propose that BifA functions upstream of SadB in the control of biofilm formation and swarming.


2015 ◽  
Vol 59 (7) ◽  
pp. 4239-4248 ◽  
Author(s):  
Douglas J. Biedenbach ◽  
Krystyna Kazmierczak ◽  
Samuel K. Bouchillon ◽  
Daniel F. Sahm ◽  
Patricia A. Bradford

ABSTRACTThe combination of aztreonam plus avibactam is being developed for use in infections caused by metallo-β-lactamase-producingEnterobacteriaceaestrains that also produce serine β-lactamases. Thein vitroactivities of aztreonam-avibactam and comparator antimicrobials were determined against year 2012 and 2013 clinical isolates ofEnterobacteriaceae,Pseudomonas aeruginosa, andAcinetobacter baumanniiusing the broth microdilution methodology recommended by the Clinical and Laboratory Standards Institute (CLSI). A total of 28,501 unique clinical isolates were obtained from patients in 190 medical centers within 39 countries. MIC90values of aztreonam and aztreonam-avibactam against all collected isolates ofEnterobacteriaceae(n= 23,516) were 64 and 0.12 μg/ml, respectively, with 76.2% of the isolates inhibited by ≤4 μg/ml of aztreonam (the CLSI breakpoint) and 99.9% of the isolates inhibited by ≤4 μg/ml of aztreonam-avibactam using a fixed concentration of 4 μg/ml of avibactam. The MIC90was 32 μg/ml for both aztreonam and aztreonam-avibactam againstP. aeruginosa(n= 3,766). Aztreonam alone or in combination with avibactam had noin vitroactivity against isolates ofA. baumannii. PCR and sequencing were used to characterize 5,076 isolates for β-lactamase genes. Aztreonam was not active against mostEnterobacteriaceaeisolates producing class A or class C enzymes alone or in combination with class B metallo-β-lactamases. In contrast, >99% ofEnterobacteriaceaeisolates producing all observed Ambler classes of β-lactamase enzymes were inhibited by ≤4 μg/ml aztreonam in combination with avibactam, including isolates that produced IMP-, VIM-, and NDM-type metallo-β-lactamases in combination with multiple serine β-lactamases.


Sign in / Sign up

Export Citation Format

Share Document