scholarly journals Putative extracellular α-class carbonic anhydrase, EcaA, of Synechococcus elongatus PCC 7942 is an active enzyme: a sequel to an old story

Microbiology ◽  
2018 ◽  
Vol 164 (4) ◽  
pp. 576-586 ◽  
Author(s):  
Elena V. Kupriyanova ◽  
Maria A. Sinetova ◽  
Vladimir S. Bedbenov ◽  
Natalia A. Pronina ◽  
Dmitry A. Los
PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e59861 ◽  
Author(s):  
Jared M. Fraser ◽  
Sarah E. Tulk ◽  
Jennifer A. Jeans ◽  
Douglas A. Campbell ◽  
Thomas S. Bibby ◽  
...  

Microbiology ◽  
2005 ◽  
Vol 151 (8) ◽  
pp. 2605-2613 ◽  
Author(s):  
Jayna L. Ditty ◽  
Shannon R. Canales ◽  
Breanne E. Anderson ◽  
Stanly B. Williams ◽  
Susan S. Golden

The kaiA, kaiB and kaiC genes encode the core components of the cyanobacterial circadian clock in Synechococcus elongatus PCC 7942. Rhythmic expression patterns of kaiA and of the kaiBC operon normally peak in synchrony. In some mutants the relative timing of peaks (phase relationship) between these transcription units is altered, but circadian rhythms persist robustly. In this study, the importance of the transcriptional timing of kai genes was examined. Expressing either kaiA or kaiBC from a heterologous promoter whose peak expression occurs 12 h out of phase from the norm, and thus 12 h out of phase from the other kai locus, did not affect the time required for one cycle (period) or phase of the circadian rhythm, as measured by bioluminescence reporters. Furthermore, the data confirm that specific cis elements within the promoters of the kai genes are not necessary to sustain clock function.


2004 ◽  
Vol 101 (38) ◽  
pp. 13927-13932 ◽  
Author(s):  
T. Nishiwaki ◽  
Y. Satomi ◽  
M. Nakajima ◽  
C. Lee ◽  
R. Kiyohara ◽  
...  

2020 ◽  
Vol 61 (9) ◽  
pp. 1661-1668
Author(s):  
Egi Tritya Apdila ◽  
Shukumi Inoue ◽  
Mie Shimojima ◽  
Koichiro Awai

Abstract Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the major components of thylakoid membranes and well-conserved from cyanobacteria to chloroplasts. However, cyanobacteria and chloroplasts synthesize these galactolipids using different pathways and enzymes, but they are believed to share a common ancestor. This fact implies that there was a replacement of the cyanobacterial galactolipid biosynthesis pathway during the evolution of a chloroplast. In this study, we first replaced the cyanobacterial MGDG biosynthesis pathway in a model cyanobacterium, Synechococcus elongatus PCC 7942, with the corresponding plant-type pathway. No obvious phenotype was observed under the optimum growth condition, and the content of membrane lipids was not largely altered in the transformants. We next replaced the cyanobacterial DGDG biosynthesis pathway with the corresponding plant-type pathway using the strain described above and isolated the strain harboring the replaced plant-type pathway instead of the whole galactolipid biosynthesis pathway. This transformant, SeGPT, can grow photoautotrophically, indicating that cyanobacterial galactolipid biosynthesis pathways can be functionally complemented by the corresponding plant-type pathways and that the lipid products MGDG and DGDG, and not biosynthesis pathways, are important. While SeGPT does not show strong growth retardation, the strain has low cellular chlorophyll content but it retained a similar oxygen evolution rate per chlorophyll content compared with the wild type. An increase in total membrane lipid content was observed in SeGPT, which was caused by a significant increase in DGDG content. SeGPT accumulated carotenoids from the xanthophyll groups. These results suggest that cyanobacteria have the capacity to accept other pathways to synthesize essential components of thylakoid membranes.


2020 ◽  
Vol 8 (8) ◽  
pp. 1234
Author(s):  
Olga A. Koksharova ◽  
Alexandra A. Popova ◽  
Vladimir A. Plyuta ◽  
Inessa A. Khmel

Microbial volatile organic compounds (VOCs) are cell metabolites that affect many physiological functions of prokaryotic and eukaryotic organisms. Earlier we have demonstrated the inhibitory effects of soil bacteria volatiles, including ketones, on cyanobacteria. Cyanobacteria are very sensitive to ketone action. To investigate the possible molecular mechanisms of the ketone 2-nonanone influence on cyanobacterium Synechococcus elongatus PCC 7942, we applied a genetic approach. After Tn5-692 transposon mutagenesis, several 2-nonanone resistant mutants have been selected. Four different mutant strains were used for identification of the impaired genes (Synpcc7942_1362, Synpcc7942_0351, Synpcc7942_0732, Synpcc7942_0726) that encode correspondingly: 1) a murein-peptide ligase Mpl that is involved in the biogenesis of cyanobacteria cell wall; 2) a putative ABC transport system substrate-binding proteins MlaD, which participates in ABC transport system that maintains lipid asymmetry in the gram-negative outer membrane by aberrantly localized phospholipids transport from outer to inner membranes of bacterial cells; 3) a conserved hypothetical protein that is encoding by gene belonging to phage gene cluster in Synechococcus elongatus PCC 7942 genome; 4) a protein containing the VRR-NUC (virus-type replication-repair nuclease) domain present in restriction-modification enzymes involved in replication and DNA repair. The obtained results demonstrated that 2-nonanone may have different targets in Synechococcus elongatus PCC 7942 cells. Among them are proteins involved in the biogenesis and functioning of the cyanobacteria cell wall (Synpcc7942_1362, Synpcc7942_0351, Synpcc7942_0732) and protein participating in stress response at DNA restriction-modification level (Synpcc7942_0726). This paper is the first report about the genes that encode protein products, which can be affected by 2-nonanone.


Sign in / Sign up

Export Citation Format

Share Document