Role of motility and chemotaxis in the pathogenesis of Dickeya dadantii 3937 (ex Erwinia chrysanthemi 3937)

Microbiology ◽  
2009 ◽  
Vol 155 (2) ◽  
pp. 434-442 ◽  
Author(s):  
María Antúnez-Lamas ◽  
Ezequiel Cabrera-Ordóñez ◽  
Emilia López-Solanilla ◽  
Rosa Raposo ◽  
Oswaldo Trelles-Salazar ◽  
...  

Dickeya dadantii 3937 (ex Erwinia chrysanthemi), a member of the Enterobacteriaceae, causes soft rot in many economically important crops. A successful pathogen has to reach the interior of the plant in order to cause disease. To study the role of motility and chemotaxis in the pathogenicity of D. dadantii 3937, genes involved in the chemotactic signal transduction system (cheW, cheB, cheY and cheZ) and in the structure of the flagellar motor (motA) were mutagenized. All the mutant strains grew like the wild-type in culture media, and the production and secretion of pectolytic enzymes was not affected. As expected, the swimming ability of the mutant strains was reduced with respect to the wild-type: motA (94 %), cheY (80 %), cheW (74 %), cheB (54 %) and cheZ (48 %). The virulence of the mutant strains was analysed in chicory, Saintpaulia and potato. The mutant strains were also tested for their capability to enter into Arabidopsis leaves. All the mutants showed a significant decrease of virulence in certain hosts; however, the degree of virulence reduction varied depending on the virulence assay. The ability to penetrate Arabidopsis leaves was impaired in all the mutants, whereas the capacity to colonize potato tubers after artificial inoculation was affected in only two mutant strains. In general, the virulence of the mutants could be ranked as motA<cheY<cheB=cheW<cheZ, which correlated with the degree to which swimming was affected. These results clearly indicate that motility plays an important role in the pathogenicity of this bacterium.

2004 ◽  
Vol 72 (5) ◽  
pp. 3077-3080 ◽  
Author(s):  
Francesco Iannelli ◽  
Damiana Chiavolini ◽  
Susanna Ricci ◽  
Marco Rinaldo Oggioni ◽  
Gianni Pozzi

ABSTRACT The role of pneumococcal surface protein C (PspC; also called SpsA, CbpA, and Hic) in sepsis by Streptococcus pneumoniae was investigated in a murine infection model. The pspC gene was deleted in strains D39 (type 2) and A66 (type 3), and the mutants were tested by being injected intravenously into mice. The animals infected with the mutant strains showed a significant increase in survival, with the 50% lethal dose up to 250-fold higher than that for the wild type. Our findings indicate that PspC affords a decisive contribution to sepsis development.


2000 ◽  
Vol 182 (19) ◽  
pp. 5479-5485 ◽  
Author(s):  
Helena I. M. Boshoff ◽  
Valerie Mizrahi

ABSTRACT A pyrazinamidase (PZase)-deficient pncA mutant ofMycobacterium tuberculosis, constructed by allelic exchange, was used to investigate the effects of heterologous amidase gene expression on the susceptibility of this organism to pyrazinamide (PZA) and related amides. The mutant was highly resistant to PZA (MIC, >2,000 μg/ml), in accordance with the well-established role ofpncA in the PZA susceptibility of M. tuberculosis (A. Scorpio and Y. Zhang, Nat. Med. 2:662–667, 1996). Integration of the pzaA gene encoding the major PZase/nicotinamidase from Mycobacterium smegmatis (H. I. M. Boshoff and V. Mizrahi, J. Bacteriol. 180:5809–5814, 1998) or the M. tuberculosis pncA gene into the pncAmutant complemented its PZase/nicotinamidase defect. In bothpzaA- and pncA-complemented mutant strains, the PZase activity was detected exclusively in the cytoplasm, suggesting an intracellular localization for PzaA and PncA. ThepzaA-complemented strain was hypersensitive to PZA (MIC, ≤10 μg/ml) and nicotinamide (MIC, ≥20 μg/ml) and was also sensitive to benzamide (MIC, 20 μg/ml), unlike the wild-type andpncA-complemented mutant strains, which were highly resistant to this amide (MIC, >500 μg/ml). This finding was consistent with the observation that benzamide is hydrolyzed by PzaA but not by PncA. Overexpression of PzaA also conferred sensitivity to PZA, nicotinamide, and benzamide on M. smegmatis (MIC, 150 μg/ml in all cases) and rendered Escherichia colihypersensitive for growth at low pH.


2021 ◽  
Vol 10 (37) ◽  
Author(s):  
Yung-An Lee ◽  
Kuan-Pei Chen

Erwinia chrysanthemi S3-1 is a bacterial soft rot pathogen of the white-flowered calla lily. The complete genome sequence of the strain was determined and used to reclassify the strain as Dickeya dadantii subsp. dieffenbachiae . The sequence will be useful to study plant host-driven speciation in strains of D. dadantii .


2020 ◽  
Vol 6 (2) ◽  
pp. 86
Author(s):  
Marina Zoppo ◽  
Fabrizio Fiorentini ◽  
Cosmeri Rizzato ◽  
Mariagrazia Di Luca ◽  
Antonella Lupetti ◽  
...  

The Candida parapsilosis genome encodes for five agglutinin-like sequence (Als) cell-wall glycoproteins involved in adhesion to biotic and abiotic surfaces. The work presented here is aimed at analyzing the role of the two still uncharacterized ALS genes in C. parapsilosis, CpALS4790 and CpALS0660, by the generation and characterization of CpALS4790 and CpALS066 single mutant strains. Phenotypic characterization showed that both mutant strains behaved as the parental wild type strain regarding growth rate in liquid/solid media supplemented with cell-wall perturbing agents, and in the ability to produce pseudohyphae. Interestingly, the ability of the CpALS0660 null mutant to adhere to human buccal epithelial cells (HBECs) was not altered when compared with the wild-type strain, whereas deletion of CpALS4790 led to a significant loss of the adhesion capability. RT-qPCR analysis performed on the mutant strains in co-incubation with HBECs did not highlight significant changes in the expression levels of others ALS genes. In vivo experiments in a murine model of vaginal candidiasis indicated a significant reduction in CFUs recovered from BALB/C mice infected with each mutant strain in comparison to those infected with the wild type strain, confirming the involvement of CpAls4790 and CpAls5600 proteins in C. parapsilosis vaginal candidiasis in mice.


2020 ◽  
Vol 8 (1) ◽  
pp. 70 ◽  
Author(s):  
Bhumika Shokeen ◽  
Jane Park ◽  
Emily Duong ◽  
Sonam Rambhia ◽  
Manash Paul ◽  
...  

RadD, a major adhesin of oral fusobacteria, is part of a four-gene operon encoding the small lipoprotein FAD-I and two currently uncharacterized small proteins encoded by the rapA and rapB genes. Previously, we described a role for FAD-I in the induction of human B-defensin 2 (hBD2) upon contact with oral epithelial cells. Here, we investigated potential roles for fad-I, rapA, and rapB in interspecies interaction and biofilm formation. Gene inactivation mutants were generated for each of these genes in the nucleatum and polymorphum subspecies of Fusobacterium nucleatum and characterized for their adherence to partner species, biofilm formation, and operon transcription. Binding to Streptococcus gordonii was increased in all mutant strains with Δfad-I having the most significant effect. This increased adherence was directly proportional to elevated radD transcript levels and resulted in significantly different architecture and height of the biofilms formed by Δfad-I and S. gordonii compared to the wild-type parent. In conclusion, FAD-I is important for fusobacterial interspecies interaction as its lack leads to increased production of the RadD adhesin suggesting a role of FAD-I in its regulation. This regulatory effect does not require the presence of functional RadD.


2002 ◽  
Vol 184 (10) ◽  
pp. 2850-2853 ◽  
Author(s):  
Annie Conter ◽  
Rachel Sturny ◽  
Claude Gutierrez ◽  
Kaymeuang Cam

ABSTRACT The RcsCB His-Asp phosphorelay system regulates the expression of several genes of Escherichia coli, but the molecular nature of the inducing signal is still unknown. We show here that treatment of an exponentially growing culture of E. coli with the cationic amphipathic compound chlorpromazine (CPZ) stimulates expression of a set of genes positively regulated by the RcsCB system. This induction is abolished in rcsB or rcsC mutant strains. In addition, treatment with CPZ inhibits growth. The wild-type strain is able to recover from this inhibition and resume growth after a period of adaptation. In contrast, strains deficient in the RcsCB His-Asp phosphorelay system are hypersensitive to CPZ. These results suggest that cells must express specific RcsCB-regulated genes in order to cope with the CPZ-induced stress. This is the first report of the essential role of the RcsCB system in a stress situation. These results also strengthen the notion that alterations of the cell envelope induce a signal recognized by the RcsC sensor.


2007 ◽  
Vol 75 (7) ◽  
pp. 3315-3324 ◽  
Author(s):  
Eric J. Gauger ◽  
Mary P. Leatham ◽  
Regino Mercado-Lubo ◽  
David C. Laux ◽  
Tyrrell Conway ◽  
...  

ABSTRACT Previously, we reported that the mouse intestine selected mutants of Escherichia coli MG1655 that have improved colonizing ability (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). These mutants grew 10 to 20% faster than their parent in mouse cecal mucus in vitro and 15 to 30% faster on several sugars found in the mouse intestine. The mutants were nonmotile and had deletions of various lengths beginning immediately downstream of an IS1 element located within the regulatory region of the flhDC operon, which encodes the master regulator of flagellum biosynthesis, FlhD4C2. Here we show that during intestinal colonization by wild-type E. coli strain MG1655, 45 to 50% of the cells became nonmotile by day 3 after feeding of the strain to mice and between 80 and 90% of the cells were nonmotile by day 15 after feeding. Ten nonmotile mutants isolated from mice were sequenced, and all were found to have flhDC deletions of various lengths. Despite this strong selection, 10 to 20% of the E. coli MG1655 cells remained motile over a 15-day period, suggesting that there is an as-yet-undefined intestinal niche in which motility is an advantage. The deletions appear to be selected in the intestine for two reasons. First, genes unrelated to motility that are normally either directly or indirectly repressed by FlhD4C2 but can contribute to maximum colonizing ability are released from repression. Second, energy normally used to synthesize flagella and turn the flagellar motor is redirected to growth.


1999 ◽  
Vol 12 (10) ◽  
pp. 845-851 ◽  
Author(s):  
Sylwia Jafra ◽  
Izabela Figura ◽  
Nicole Hugouvieux-Cotte-Pattat ◽  
Ewa Lojkowska

Erwinia chrysanthemi mutants, containing transcriptional fusions of one of the minor pectate lyase genes (pelI, pelL, pelZ) with the reporter gene encoding β-glucuronidase activity, were studied for their ability to cause disease symptoms and to synthesize pectinases after inoculation of potato tubers. The strains affected in pelI and pelL genes displayed reduced virulence on potato tubers, demonstrating the important role of these isoenzymes in soft rot disease. Inactivation of the pelZ gene slightly influences the ability to macerate. Analysis of the bacterial population showed rapid multiplication of bacteria during infection. Similar kinetics of growth were observed for all mutants and for the wild-type strain. Comparison of the mutants and the wild-type strain showed that the pelI, pelL, and pelZ mutants synthesized reduced levels of Pels. The expression of pelZ is fivefold higher in planta than in bacterial cultures. In contrast, both pelI and pelL are highly (10-fold factor) induced in planta, which is characteristic of the plant-inducible pectate lyases.


2005 ◽  
Vol 71 (10) ◽  
pp. 6104-6114 ◽  
Author(s):  
D. J. Koch ◽  
C. Rückert ◽  
D. A. Rey ◽  
A. Mix ◽  
A. Pühler ◽  
...  

ABSTRACT Corynebacterium glutamicum ATCC 13032 was found to be able to utilize a broad range of sulfonates and sulfonate esters as sulfur sources. The two gene clusters potentially involved in sulfonate utilization, ssuD1CBA and ssuI-seuABC-ssuD2, were identified in the genome of C. glutamicum ATCC 13032 by similarity searches. While the ssu genes encode proteins resembling Ssu proteins from Escherichia coli or Bacillus subtilis, the seu gene products exhibited similarity to the dibenzothiophene-degrading Dsz monooxygenases of Rhodococcus strain IGTS8. Growth tests with the C. glutamicum wild-type and appropriate mutant strains showed that the clustered genes ssuC, ssuB, and ssuA, putatively encoding the components of an ABC-type transporter system, are required for the utilization of aliphatic sulfonates. In C. glutamicum sulfonates are apparently degraded by sulfonatases encoded by ssuD1 and ssuD2. It was also found that the seu genes seuA, seuB, and seuC can effectively replace ssuD1 and ssuD2 for the degradation of sulfonate esters. The utilization of all sulfonates and sulfonate esters tested is dependent on a novel putative reductase encoded by ssuI. Obviously, all monooxygenases encoded by the ssu and seu genes, including SsuD1, SsuD2, SeuA, SeuB, and SeuC, which are reduced flavin mononucleotide dependent according to sequence similarity, have SsuI as an essential component. Using real-time reverse transcription-PCR, the ssu and seu gene cluster was found to be expressed considerably more strongly during growth on sulfonates and sulfonate esters than during growth on sulfate.


2013 ◽  
Vol 62 (10) ◽  
pp. 1524-1530 ◽  
Author(s):  
Heidi Pauer ◽  
Soraia N. V. Cavalcanti ◽  
Felipe L. Teixeira ◽  
Joaquim Santos-Filho ◽  
Rossiane C. Vommaro ◽  
...  

Bacteroides fragilis is the Gram-negative strictly anaerobic bacterium most frequently isolated from clinical infections, including intra-abdominal abscess and bacteraemia. A number of factors can contribute to its virulence, including the expression of adhesins. Some of them are already characterized and can recognize and bind to extracellular matrix components, such as fibronectin. One of the molecules responsible for fibronectin-binding is an outer-membrane protein previously described by our group, which belongs to the TonB-dependent family. The aim of the present work was to characterize this protein. Initially, it was confirmed by fluorescence and electron microscopy that the fibronectin-binding molecules were located in the bacterial surface, but the distribution of these molecules on the surface was not uniform. To further evaluate the role of this protein, the gene bf1991, responsible for encoding this protein, was inactivated by a suicide vector and the mutant strains generated were used in several experiments to verify possible phenotypical alterations. In adherence assays with fibronectin immobilized on latex beads an increased adhesion was observed with the mutant strains compared with the wild-type strain. Western blot analysis in the mutant strain revealed the absence of the 120 kDa TonB-dependent outer-membrane protein and an alteration in the expression of an unknown 30 kDa protein. Killing assays using peritoneal macrophages were performed to evaluate the role of this protein as a virulence attribute and it was observed that the mutant strains were more efficiently internalized than the wild-type strains, with more internalization in the samples covered with fibronectin than in the samples not covered with it.


Sign in / Sign up

Export Citation Format

Share Document