scholarly journals The Pseudomonas aeruginosa Autoinducer N-3-Oxododecanoyl Homoserine Lactone Accelerates Apoptosis in Macrophages and Neutrophils

2003 ◽  
Vol 71 (10) ◽  
pp. 5785-5793 ◽  
Author(s):  
Kazuhiro Tateda ◽  
Yoshikazu Ishii ◽  
Manabu Horikawa ◽  
Tetsuya Matsumoto ◽  
Shinichi Miyairi ◽  
...  

ABSTRACT Quorum-sensing systems are critical regulators of the expression of virulence factors of various organisms, including Pseudomonas aeruginosa. Las and Rhl are two major quorum-sensing components, and they are regulated by their corresponding autoinducers, N-3-oxododecanoyl homoserine lactone (3-oxo-C12-HSL) and N-butyryl-l-homoserine lactone (C4-HSL). Recent progress has demonstrated the potential of quorum-sensing molecules, especially 3-oxo-C12-HSL, for modulation of the host immune system. Here we show the specific ability of 3-oxo-C12-HSL to induce apoptosis in certain types of cells. When bone marrow-derived macrophages were incubated with synthetic 3-oxo-C12-HSL, but when they were incubated not C4-HSL, significant loss of viability was observed in a concentration (12 to 50 μM)- and incubation time (1 to 24 h)-dependent manner. The cytotoxic activity of 3-oxo-C12-HSL was also observed in neutrophils and monocytic cell lines U-937 and P388D1 but not in epithelial cell lines CCL-185 and HEp-2. Cells treated with 3-oxo-C12-HSL revealed morphological alterations indicative of apoptosis. Acceleration of apoptosis in 3-oxo-C12-HSL-treated cells was confirmed by multiple criteria (caspases 3 and 8, histone-associated DNA fragments, phosphatidylserine expression). Structure-activity correlation experiments demonstrated that the fine structure of 3-oxo-C12-HSL, the HSL backbone, and side chain length are required for maximal activity. These data suggest that Pseudomonas 3-oxo-C12-HSL specifically promotes induction of apoptosis, which may be associated with 3-oxo-C12-HSL-induced cytotoxicity in macrophages and neutrophils. Our data suggest that the quorum-sensing molecule 3-oxo-C12-HSL has critical roles in the pathogenesis of P. aeruginosa infection, not only in the induction of bacterial virulence factors but also in the modulation of host responses.

Microbiology ◽  
2009 ◽  
Vol 155 (3) ◽  
pp. 712-723 ◽  
Author(s):  
Valérie Dekimpe ◽  
Eric Déziel

Pseudomonas aeruginosa uses the two major quorum-sensing (QS) regulatory systems las and rhl to modulate the expression of many of its virulence factors. The las system is considered to stand at the top of the QS hierarchy. However, some virulence factors such as pyocyanin have been reported to still be produced in lasR mutants under certain conditions. Interestingly, such mutants arise spontaneously under various conditions, including in the airways of cystic fibrosis patients. Using transcriptional lacZ reporters, LC/MS quantification and phenotypic assays, we have investigated the regulation of QS-controlled factors by the las system. Our results show that activity of the rhl system is only delayed in a lasR mutant, thus allowing the expression of multiple virulence determinants such as pyocyanin, rhamnolipids and C4-homoserine lactone (HSL) during the late stationary phase. Moreover, at this stage, RhlR is able to overcome the absence of the las system by activating specific LasR-controlled functions, including production of 3-oxo-C12-HSL and Pseudomonas quinolone signal (PQS). P. aeruginosa is thus able to circumvent the deficiency of one of its QS systems by allowing the other to take over. This work demonstrates that the QS hierarchy is more complex than the model simply presenting the las system above the rhl system.


2007 ◽  
Vol 73 (10) ◽  
pp. 3183-3188 ◽  
Author(s):  
Takenori Ishida ◽  
Tsukasa Ikeda ◽  
Noboru Takiguchi ◽  
Akio Kuroda ◽  
Hisao Ohtake ◽  
...  

ABSTRACT N-Octanoyl cyclopentylamide (C8-CPA) was found to moderately inhibit quorum sensing in Pseudomonas aeruginosa PAO1. To obtain more powerful inhibitors, a series of structural analogs of C8-CPA were synthesized and examined for their ability to inhibit quorum sensing in P. aeruginosa PAO1. The lasB-lacZ and rhlA-lacZ reporter assays revealed that the chain length and the ring structure were critical for C8-CPA analogs to inhibit quorum sensing. N-Decanoyl cyclopentylamide (C10-CPA) was found to be the strongest inhibitor, and its concentrations required for half-maximal inhibition for lasB-lacZ and rhlA-lacZ expression were 80 and 90 μM, respectively. C10-CPA also inhibited production of virulence factors, including elastase, pyocyanin, and rhamnolipid, and biofilm formation without affecting growth of P. aeruginosa PAO1. C10-CPA inhibited induction of both lasI-lacZ by N-(3-oxododecanoyl)-l-homoserine lactone (PAI1) and rhlA-lacZ by N-butanoyl-l-homoserine lactone (PAI2) in the lasI rhlI mutant of P. aeruginosa PAO1, indicating that C10-CPA interferes with the las and rhl quorum-sensing systems via inhibiting interaction between their response regulators (LasR and RhlR) and autoinducers.


2020 ◽  
Author(s):  
Lokender Kumar ◽  
Nathanael Brenner ◽  
John Brice ◽  
Judith Klein-Seetharaman ◽  
Susanta K. Sarkar

ABSTRACTPseudomonas aeruginosa utilizes a chemical social networking system referred to as quorum sensing (QS) to strategically co-ordinate the expression of virulence factors and biofilm formation. Virulence attributes damage the host cells, impair the host immune system, and protect bacterial cells from antibiotic attack. Thus, anti-QS agents may act as novel anti-infective therapeutics to treat P. aeruginosa infections. The present study was performed to evaluate the anti-QS, anti-biofilm, and anti-virulence activity of β-lactam antibiotics (carbapenems and cephalosporins) against P. aeruginosa. The anti-QS activity was quantified using Chromobacterium violaceum CV026 as a QS reporter strain. Our results showed that cephalosporins including cefepime (CP), ceftazidime (CF), and ceftriaxone (CT) exhibited potent anti-QS and anti-virulence activities against P. aeruginosa PAO1. These antibiotics significantly impaired motility phenotypes, decreased pyocyanin production, and reduced the biofilm formation by P. aeruginosa PAO1. In the present study, we studied isogenic QS mutants of PAO1: ΔLasR, ΔRhlR, ΔPqsA, and ΔPqsR and found that the levels of virulence factors of antibiotic-treated PAO1 were comparable to QS mutant strains. Molecular docking predicted high binding affinities of cephalosporins for the ligand-binding pocket of QS receptors (CviR, LasR, and PqsR). In addition, our results showed that the anti-microbial activity of aminoglycosides increased in the presence of sub-inhibitory concentrations (sub-MICs) of CP against P. aeruginosa PAO1. Further, utilizing Caenorhabditis elegans as an animal model for the in vivo anti-virulence effects of antibiotics, cephalosporins showed a significant increase in C. elegans survival by suppressing virulence factor production in P. aeruginosa. Thus, our results indicate that cephalosporins might provide a viable anti-virulence therapy in the treatment of infections caused by multi-drug resistant P. aeruginosa.


Microbiology ◽  
2011 ◽  
Vol 157 (7) ◽  
pp. 2120-2132 ◽  
Author(s):  
Olivier M. Vandeputte ◽  
Martin Kiendrebeogo ◽  
Tsiry Rasamiravaka ◽  
Caroline Stévigny ◽  
Pierre Duez ◽  
...  

Preliminary screening of the Malagasy plant Combretum albiflorum for compounds attenuating the production of quorum sensing (QS)-controlled virulence factors in bacteria led to the identification of active fractions containing flavonoids. In the present study, several flavonoids belonging to the flavone, flavanone, flavonol and chalcone structural groups were screened for their capacity to reduce the production of QS-controlled factors in the opportunistic pathogen Pseudomonas aeruginosa (strain PAO1). Flavanones (i.e. naringenin, eriodictyol and taxifolin) significantly reduced the production of pyocyanin and elastase in P. aeruginosa without affecting bacterial growth. Consistently, naringenin and taxifolin reduced the expression of several QS-controlled genes (i.e. lasI, lasR, rhlI, rhlR, lasA, lasB, phzA1 and rhlA) in P. aeruginosa PAO1. Naringenin also dramatically reduced the production of the acylhomoserine lactones N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) and N-butanoyl-l-homoserine lactone (C4-HSL), which is driven by the lasI and rhlI gene products, respectively. In addition, using mutant strains deficient for autoinduction (ΔlasI and ΔrhlI) and LasR- and RhlR-based biosensors, it was shown that QS inhibition by naringenin not only is the consequence of a reduced production of autoinduction compounds but also results from a defect in the proper functioning of the RlhR–C4-HSL complex. Widely distributed in the plant kingdom, flavonoids are known for their numerous and determinant roles in plant physiology, plant development and in the success of plant–rhizobia interactions, but, as shown here, some of them also have a role as inhibitors of the virulence of pathogenic bacteria by interfering with QS mechanisms.


2006 ◽  
Vol 74 (12) ◽  
pp. 7029-7031 ◽  
Author(s):  
Kazunori Gomi ◽  
Toshiaki Kikuchi ◽  
Yutaka Tokue ◽  
Shigeru Fujimura ◽  
Akiko Uehara ◽  
...  

ABSTRACT Chromobacterium violaceum produces autoinducers, including homoserine lactones (HSLs), for genetic regulation. Among the seven HSLs derived from C. violaceum we evaluated, only C12-HSL stimulated the production of inflammatory cytokines in mammalian monocytic cell lines through the activation of the NF-κB signaling pathway besides their quorum-sensing role, like 3-oxo-C12-HSL from Pseudomonas aeruginosa.


Microbiology ◽  
2009 ◽  
Vol 155 (6) ◽  
pp. 1934-1939 ◽  
Author(s):  
Soichiro Kimura ◽  
Kazuhiro Tateda ◽  
Yoshikazu Ishii ◽  
Manabu Horikawa ◽  
Shinichi Miyairi ◽  
...  

Bacteria commonly communicate with each other by a cell-to-cell signalling mechanism known as quorum sensing (QS). Recent studies have shown that the Las QS autoinducer N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) of Pseudomonas aeruginosa performs a variety of functions not only in intraspecies communication, but also in interspecies and interkingdom interactions. In this study, we report the effects of Pseudomonas 3-oxo-C12-HSL on the growth and suppression of virulence factors in other bacterial species that frequently co-exist with Ps. aeruginosa in nature. It was found that 3-oxo-C12-HSL, but not its analogues, suppressed the growth of Legionella pneumophila in a dose-dependent manner. However, 3-oxo-C12-HSL did not exhibit a growth-suppressive effect on Serratia marcescens, Proteus mirabilis, Escherichia coli, Alcaligenes faecalis and Stenotrophomonas maltophilia. A concentration of 50 μM 3-oxo-C12-HSL completely inhibited the growth of L. pneumophila. Additionally, a significant suppression of biofilm formation was demonstrated in L. pneumophila exposed to 3-oxo-C12-HSL. Our results suggest that the Pseudomonas QS autoinducer 3-oxo-C12-HSL exerts both bacteriostatic and virulence factor-suppressive activities on L. pneumophila alone.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2863
Author(s):  
María Constanza Luciardi ◽  
María Amparo Blázquez ◽  
María Rosa Alberto ◽  
Elena Cartagena ◽  
Mario Eduardo Arena

The chemical composition of three Citrus limon oils: lemon essential oil (LEO), lemon terpenes (LT) and lemon essence (LE), and their influence in the virulence factors production and motility (swarming and swimming) of two Pseudomonas aeruginosa strains (ATCC 27853 and a multidrug-resistant HT5) were investigated. The main compound, limonene, was also tested in biological assays. Eighty-four compounds, accounting for a relative peak area of 99.23%, 98.58% and 99.64%, were identified by GC/MS. Limonene (59–60%), γ-terpinene (10–11%) and β-pinene (7–15%) were the main compounds. All lemon oils inhibited specific biofilm production and bacterial metabolic activities into biofilm in a dose-dependent manner (20–65%, in the range of 0.1–4 mg mL−1) of both strains. Besides, all samples inhibited about 50% of the elastase activity at 0.1 mg mL−1. Pyocyanin biosynthesis decreases until 64% (0.1–4 mg mL−1) for both strains. Swarming motility of P. aeruginosa ATCC 27853 was completely inhibited by 2 mg mL−1 of lemon oils. Furthermore, a decrease (29–55%, 0.1–4 mg mL−1) in the synthesis of Quorum sensing (QS) signals was observed. The oils showed higher biological activities than limonene. Hence, their ability to control the biofilm of P. aeruginosa and reduce the production of virulence factors regulated by QS makes lemon oils good candidates to be applied as preservatives in the food processing industry.


2012 ◽  
Vol 56 (12) ◽  
pp. 6088-6094 ◽  
Author(s):  
Li Ma ◽  
Xiangyang Liu ◽  
Haihua Liang ◽  
Yizhou Che ◽  
Caixia Chen ◽  
...  

ABSTRACTInPseudomonas aeruginosa, the quorum-sensing (QS) system is closely related to biofilm formation. We previously demonstrated that 14-alpha-lipoyl andrographolide (AL-1) has synergistic effects on antibiofilm and antivirulence factors (pyocyanin and exopolysaccharide) ofP. aeruginosawhen combined with conventional antibiotics, while it has little inhibitory effect on its growth. However, its molecular mechanism remains elusive. Here we investigated the effect of AL-1 on QS systems, especially the Las and Rhl systems. This investigation showed that AL-1 can inhibit LasR–3-oxo-C12-homoserine lactone (HSL) interactions and repress the transcriptional level of QS-regulated genes. Reverse transcription (RT)-PCR data showed that AL-1 significantly reduced the expression levels oflasR,lasI,rhlR, andrhlIin a dose-dependent manner. AL-1 not only decreased the expression level of Psl, which is positively regulated by the Las system, but also increased the level of secretion of ExoS, which is negatively regulated by the Rhl system, indicating that AL-1 has multiple effects on both the Las and Rhl systems. It is no wonder that AL-1 showed synergistic effects with other antimicrobial agents in the treatment ofP. aeruginosainfections.


1998 ◽  
Vol 180 (20) ◽  
pp. 5443-5447 ◽  
Author(s):  
Kelly Evans ◽  
Luciano Passador ◽  
Ramakrishnan Srikumar ◽  
Eric Tsang ◽  
Jonathon Nezezon ◽  
...  

ABSTRACT Pseudomonas aeruginosa nalB mutants which hyperexpress the MexAB-OprM multidrug efflux system produce reduced levels of several extracellular virulence factors known to be regulated by quorum sensing. Such mutants also produce less acylated homoserine lactone autoinducer PAI-1, consistent with an observed reduction inlasI expression. These data suggest that PAI-1 is a substrate for MexAB-OprM, and its resulting exclusion from cells hyperexpressing MexAB-OprM limits PAI-1-dependent activation of lasI and the virulence genes.


2013 ◽  
Vol 57 (11) ◽  
pp. 5629-5641 ◽  
Author(s):  
Sean Yang-Yi Tan ◽  
Song-Lin Chua ◽  
Yicai Chen ◽  
Scott A. Rice ◽  
Staffan Kjelleberg ◽  
...  

ABSTRACTBacteria communicate by means of small signal molecules in a process termed quorum sensing (QS). QS enables bacteria to organize their activities at the population level, including the coordinated secretion of virulence factors. Certain small-molecule compounds, known as quorum-sensing inhibitors (QSIs), have been shown to effectively block QS and subsequently attenuate the virulence ofPseudomonas aeruginosa, as well as increasing its susceptibility to both antibiotics and the immune system. In this study, a structure-based virtual screening (SB-VS) approach was used for the discovery of novel QSI candidates. Three-dimensional structures of 3,040 natural compounds and their derivatives were obtained, after which molecular docking was performed using the QS receptor LasR as a target. Based on docking scores and molecular masses, 22 compounds were purchased to determine their efficacies as quorum-sensing inhibitors. Using a live reporter assay for quorum sensing, 5 compounds were found to be able to inhibit QS-regulated gene expression inP. aeruginosain a dose-dependent manner. The most promising compound, G1, was evaluated by isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis, and it was found to significantly affect the abundance of 46 proteins (19 were upregulated; 27 were downregulated) inP. aeruginosaPAO1. It specifically reduced the expression of several quorum-sensing-regulated virulence factors, such as protease IV, chitinase, and pyoverdine synthetases. G1 was also able to reduce extracellular DNA release and inhibited the secretion of the virulence factor, elastase, whose expression is regulated by LasR. These results demonstrate the utility of SB-VS for the discovery of target-specific QSIs.


Sign in / Sign up

Export Citation Format

Share Document