scholarly journals RhlR Expression in Pseudomonas aeruginosa Is Modulated by the Pseudomonas Quinolone Signal via PhoB-Dependent and -Independent Pathways

2006 ◽  
Vol 188 (24) ◽  
pp. 8601-8606 ◽  
Author(s):  
Vanessa Jensen ◽  
Dagmar Löns ◽  
Caroline Zaoui ◽  
Florian Bredenbruch ◽  
Andree Meissner ◽  
...  

ABSTRACT The expression of virulence determinants in Pseudomonas aeruginosa is coordinately regulated in response to both the social environment—commonly referred to as quorum sensing—and to environmental cues. In this study we have dissected the various independent regulation levels for pyocyanin production, which is influenced by the homoserine lactone- and Pseudomonas quinolone signal (PQS)-mediated quorum-sensing systems as well as by iron and phosphate availability. We demonstrate that the phosphate regulon is involved in the transcriptional activation of rhlR and the augmentation of PQS and pyocyanin production under phosphate limitation. However, we also observed an enhancement of rhlR transcription under low-iron medium conditions and after the addition of PQS that was independent of the phosphate regulon. These results highlight the complexity of secondary metabolite production in P. aeruginosa via environmental cues and the quorum-sensing system.

Microbiology ◽  
2009 ◽  
Vol 155 (3) ◽  
pp. 712-723 ◽  
Author(s):  
Valérie Dekimpe ◽  
Eric Déziel

Pseudomonas aeruginosa uses the two major quorum-sensing (QS) regulatory systems las and rhl to modulate the expression of many of its virulence factors. The las system is considered to stand at the top of the QS hierarchy. However, some virulence factors such as pyocyanin have been reported to still be produced in lasR mutants under certain conditions. Interestingly, such mutants arise spontaneously under various conditions, including in the airways of cystic fibrosis patients. Using transcriptional lacZ reporters, LC/MS quantification and phenotypic assays, we have investigated the regulation of QS-controlled factors by the las system. Our results show that activity of the rhl system is only delayed in a lasR mutant, thus allowing the expression of multiple virulence determinants such as pyocyanin, rhamnolipids and C4-homoserine lactone (HSL) during the late stationary phase. Moreover, at this stage, RhlR is able to overcome the absence of the las system by activating specific LasR-controlled functions, including production of 3-oxo-C12-HSL and Pseudomonas quinolone signal (PQS). P. aeruginosa is thus able to circumvent the deficiency of one of its QS systems by allowing the other to take over. This work demonstrates that the QS hierarchy is more complex than the model simply presenting the las system above the rhl system.


2000 ◽  
Vol 182 (22) ◽  
pp. 6401-6411 ◽  
Author(s):  
Klaus Winzer ◽  
Colin Falconer ◽  
Nachman C. Garber ◽  
Stephen P. Diggle ◽  
Miguel Camara ◽  
...  

ABSTRACT In Pseudomonas aeruginosa, many exoproduct virulence determinants are regulated via a hierarchical quorum-sensing cascade involving the transcriptional regulators LasR and RhlR and their cognate activators,N-(3-oxododecanoyl)-l-homoserine lactone (3O-C12-HSL) and N-butanoyl-l-homoserine lactone (C4-HSL). In this paper, we demonstrate that the cytotoxic lectins PA-IL and PA-IIL are regulated via quorum sensing. Using immunoblot analysis, the production of both lectins was found to be directly dependent on the rhl locus while, in alasR mutant, the onset of lectin synthesis was delayed but not abolished. The PA-IL structural gene, lecA, was cloned and sequenced. Transcript analysis indicated a monocistronic organization with a transcriptional start site 70 bp upstream of thelecA translational start codon. A lux box-type element together with RpoS (ςS) consensus sequences was identified upstream of the putative promoter region. InEscherichia coli, expression of alecA::lux reporter fusion was activated by RhlR/C4-HSL, but not by LasR/3O-C12-HSL, confirming direct regulation by RhlR/C4-HSL. Similarly, in P. aeruginosaPAO1, the expression of a chromosomallecA::lux fusion was enhanced but not advanced by the addition of exogenous C4-HSL but not 3O-C12-HSL. Furthermore, mutation of rpoS abolished lectin synthesis inP. aeruginosa, demonstrating that both RpoS and RhlR/C4-HSL are required. Although the C4-HSL-dependent expression of the lecA::lux reporter in E. coli could be inhibited by the presence of 3O-C12-HSL, this did not occur in P. aeruginosa. This suggests that, in the homologous genetic background, 3O-C12-HSL does not function as a posttranslational regulator of the RhlR/C4-HSL-dependent activation oflecA expression.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
O. Lidor ◽  
A. Al-Quntar ◽  
E. C. Pesci ◽  
D. Steinberg

Abstract Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen responsible for many human infections. LasI is an acyl-homoserine lactone synthase that produces a quorum-sensing (QS) signal that positively regulates numerous P. aeruginosa virulence determinants. The inhibition of the LasI protein is therefore an attractive drug target. In this study, a novel in silico to in vitro complementation was applied to screen thiazolidinedione-type compounds for their ability to inhibit biofilm formation at concentrations not affecting bacterial growth. The compound (z)-5-octylidenethiazolidine-2, 4-dione (TZD-C8) was a strong inhibitor of biofilm formation and chosen for further study. Structural exploration of in silico docking predicted that the compound had high affinity for the LasI activity pocket. The TZD-C8 compound was also predicted to create hydrogen bonds with residues Arg30 and Ile107. Site-directed mutagenesis (SDM) of these two sites demonstrated that TZD-C8 inhibition was abolished in the lasI double mutant PAO-R30D, I107S. In addition, in vitro swarming motility and quorum sensing signal production were affected by TZD-C 8, confirming this compound alters the cell to cell signalling circuitry. Overall, this novel inhibitor of P. aeruginosa quorum sensing shows great promise and validates our mechanistic approach to discovering inhibitors of LuxI-type acyl-homoserine lactone synthases.


2001 ◽  
Vol 183 (22) ◽  
pp. 6676-6683 ◽  
Author(s):  
Gabriella Pessi ◽  
Faye Williams ◽  
Zoë Hindle ◽  
Karin Heurlier ◽  
Matthew T. G. Holden ◽  
...  

ABSTRACT Posttranscriptional control is known to contribute to the regulation of secondary metabolism and virulence determinants in certain gram-negative bacteria. Here we report the isolation of aPseudomonas aeruginosa gene which encodes a global translational regulatory protein, RsmA (regulator of secondary metabolites). Overexpression of rsmA resulted in a substantial reduction in the levels of extracellular products, including protease, elastase, and staphylolytic (LasA protease) activity as well as the PA-IL lectin, hydrogen cyanide (HCN), and the phenazine pigment pyocyanin. While inactivation of rsmAin P. aeruginosa had only minor effects on the extracellular enzymes and the PA-IL lectin, the production of HCN and pyocyanin was enhanced during the exponential phase. The influence of RsmA on N-acylhomoserine lactone-mediated quorum sensing was determined by assaying the levels ofN-(3-oxododecanoyl)homoserine lactone (3-oxo-C12-HSL) and N-butanoylhomoserine lactone (C4-HSL) produced by the rsmA mutant and thersmA-overexpressing strain. RsmA exerted a negative effect on the synthesis of both 3-oxo-C12-HSL and C4-HSL, which was confirmed by using lasI and rhlItranslational fusions. These data also highlighted the temporal expression control of the lasI gene, which was induced much earlier and to a higher level during the exponential growth phase in an rsmA mutant. To investigate whether RsmA modulates HCN production solely via quorum-sensing control, hcntranslational fusions were employed to monitor the regulation of the cyanide biosynthesis genes (hcnABC). RsmA was shown to exert an additional negative effect on cyanogenesis posttranscriptionally by acting on a region surrounding thehcnA ribosome-binding site. This suggests that, inP. aeruginosa, RsmA functions as a pleiotropic posttranscriptional regulator of secondary metabolites directly and also indirectly by modulating the quorum-sensing circuitry.


2006 ◽  
Vol 50 (11) ◽  
pp. 3674-3679 ◽  
Author(s):  
Ute Müh ◽  
Martin Schuster ◽  
Roger Heim ◽  
Ashvani Singh ◽  
Eric R. Olson ◽  
...  

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa has two complete acyl-homoserine lactone (acyl-HSL) signaling systems, LasR-LasI and RhlR-RhlI. LasI catalyzes the synthesis of N-3-oxododecanoyl homoserine lactone (3OC12-HSL), and LasR is a transcription factor that requires 3OC12-HSL as a ligand. RhlI catalyzes the synthesis of N-butanoyl homoserine lactone (C4), and RhlR is a transcription factor that responds to C4. LasR and RhlR control the transcription of hundreds of P. aeruginosa genes, many of which are critical virulence determinants, and LasR is required for RhlR function. We developed an ultra-high-throughput cell-based assay to screen a library of approximately 200,000 compounds for inhibitors of LasR-dependent gene expression. Although the library contained a large variety of chemical structures, the two best inhibitors resembled the acyl-homoserine lactone molecule that normally binds to LasR. One compound, a tetrazole with a 12-carbon alkyl tail designated PD12, had a 50% inhibitory concentration (IC50) of 30 nM. The second compound, V-06-018, had an IC50 of 10 μM and is a phenyl ring with a 12-carbon alkyl tail. A microarray analysis showed that both compounds were general inhibitors of quorum sensing, i.e., the expression levels of most LasR-dependent genes were affected. Both compounds also inhibited the production of two quorum-sensing-dependent virulence factors, elastase and pyocyanin. These compounds should be useful for studies of LasR-dependent gene regulation and might serve as scaffolds for the identification of new quorum-sensing modulators.


Microbiology ◽  
2004 ◽  
Vol 150 (4) ◽  
pp. 843-851 ◽  
Author(s):  
Michael Hogardt ◽  
Maximilian Roeder ◽  
Anna Maria Schreff ◽  
Leo Eberl ◽  
Jürgen Heesemann

In Pseudomonas aeruginosa, virulence determinants and biofilm formation are coordinated via a hierarchical quorum sensing cascade, which involves the transcriptional regulators LasR and RhlR and their cognate homoserine lactone activators C12-HSL [N-(3-oxododecanoyl)-l-homoserine lactone] and c4-hsl (n-butanoyl-l-homoserine lactone), which are produced by LasI and RhlI, respectively. The exoenzyme S regulon of P. aeruginosa, comprises genes for a type III secretion system and for four anti-host effector proteins (ExoS, T, U and Y), which are translocated into host cells. It is a reasonable assumption that this ExoS regulon should be downregulated in the biofilm growth state and thus should also be under the regulatory control of the Las/Rhl system. Therefore, an exoS′-gfp reporter construct was used, and the influence of the Las and Rhl quorum sensing systems and the effect of the stationary-phase sigma factor RpoS on regulation of the exoS gene was examined. Evidence is provided for downregulation of exoS during biofilm formation of P. aeruginosa PAO1. The rhlI mutant PDO100 and rhlR mutant PDO111, but not the lasI mutant PDO-JP1, showed approximately twofold upregulation of the exoS′-gfp reporter in comparison to PAO1. Upregulation of exoS′-gfp in the PDO100 mutant could be repressed to normal level by adding C4-HSL autoinducer, indicating a negative regulatory effect of RhlR/C4-HSL on exoS expression. As RhlR/C4-HSL is also involved in regulation of RpoS, the P. aeruginosa rpoS mutant SS24 was examined and the exoS′-gfp reporter was found to be fivefold upregulated in comparison to PAO1. For the first time evidence is reported for a regulatory cascade linking RhlR/RhlI and RpoS with the expression of the anti-host effector ExoS, part of the exoenzyme S regulon. Moreover, these data suggest that the exoenzyme S regulon may be downregulated in P. aeruginosa biofilms.


2008 ◽  
Vol 52 (10) ◽  
pp. 3648-3663 ◽  
Author(s):  
Mette E. Skindersoe ◽  
Morten Alhede ◽  
Richard Phipps ◽  
Liang Yang ◽  
Peter O. Jensen ◽  
...  

ABSTRACT During infection, Pseudomonas aeruginosa employs bacterial communication (quorum sensing [QS]) to coordinate the expression of tissue-damaging factors. QS-controlled gene expression plays a pivotal role in the virulence of P. aeruginosa, and QS-deficient mutants cause less severe infections in animal infection models. Treatment of cystic fibrosis (CF) patients chronically infected with P. aeruginosa with the macrolide antibiotic azithromycin (AZM) has been demonstrated to improve the clinical outcome. Several studies indicate that AZM may accomplish its beneficial action in CF patients by impeding QS, thereby reducing the pathogenicity of P. aeruginosa. This led us to investigate whether QS inhibition is a common feature of antibiotics. We present the results of a screening of 12 antibiotics for their QS-inhibitory activities using a previously described QS inhibitor selector 1 strain. Three of the antibiotics tested, AZM, ceftazidime (CFT), and ciprofloxacin (CPR), were very active in the assay and were further examined for their effects on QS-regulated virulence factor production in P. aeruginosa. The effects of the three antibiotics administered at subinhibitory concentrations were investigated by use of DNA microarrays. Consistent results from the virulence factor assays, reverse transcription-PCR, and the DNA microarrays support the finding that AZM, CFT, and CPR decrease the expression of a range of QS-regulated virulence factors. The data suggest that the underlying mechanism may be mediated by changes in membrane permeability, thereby influencing the flux of N-3-oxo-dodecanoyl-l-homoserine lactone.


2008 ◽  
Vol 190 (18) ◽  
pp. 6217-6227 ◽  
Author(s):  
Haihua Liang ◽  
Lingling Li ◽  
Zhaolin Dong ◽  
Michael G. Surette ◽  
Kangmin Duan

ABSTRACT Bacterial pathogenicity is often manifested by the expression of various cell-associated and secreted virulence factors, such as exoenzymes, protease, and toxins. In Pseudomonas aeruginosa, the expression of virulence genes is coordinately controlled by the global regulatory quorum-sensing systems, which includes the las and rhl systems as well as the Pseudomonas quinolone signal (PQS) system. Phenazine compounds are among the virulence factors under the control of both the rhl and PQS systems. In this study, regulation of the phzA1B1C1D1E1 (phzA1) operon, which is involved in phenazine synthesis, was investigated. In an initial study of inducing conditions, we observed that phzA1 was induced by subinhibitory concentrations of tetracycline. Screening of 13,000 mutants revealed 32 genes that altered phzA1 expression in the presence of subinhibitory tetracycline concentrations. Among them, the gene PA0964, designated pmpR ( p qsR-mediated P QS r egulator), has been identified as a novel regulator of the PQS system. It belongs to a large group of widespread conserved hypothetical proteins with unknown function, the YebC protein family (Pfam family DUF28). It negatively regulates the quorum-sensing response regulator pqsR of the PQS system by binding at its promoter region. Alongside phzA1 expression and phenazine and pyocyanin production, a set of virulence factors genes controlled by both rhl and the PQS were shown to be modulated by PmpR. Swarming motility and biofilm formation were also significantly affected. The results added another layer of regulation in the rather complex quorum-sensing systems in P. aeruginosa and demonstrated a clear functional clue for the YebC family proteins.


2021 ◽  
Vol 30 (2) ◽  
pp. 1-8
Author(s):  
Ahmad O. Rifai ◽  
Abeer M. Abd El-Aziz ◽  
Hany I. Kenawy

Background: Pseudomonas aeruginosa has developed different mechanisms of resistance against antibiotics and became one of the most life-threatening pathogens. Fighting against its virulence Factors are an alternative therapeutic target. Objective: This study was directed towards the investigation of anti-quorum sensing activity and inhibitory action on virulence factors of different agents including antibacterial agents to which Pseudomonas aeruginosa isolates are resistant and non-antibacterial agents. Methodology: Anti-quorum sensing activity of ceftriaxone, ceftazidime (CAZ), cefepime (FEP), vancomycin (VA), paracetamol (PA), and pheniramine maleate (PHE) investigated as well as their ability to reduce other virulence factors including protease, hemolysin, and pyocyanin production. Results: This study showed that 3rd and 4th generations cephalosporins could be used as anti-quorum sensing agents effectively in the treatment of Pseudomonas aeruginosa infections, however, vancomycin, paracetamol, and pheniramine maleate had no effect on inhibiting the studied virulence factors. Conclusion: From our study we conclude that although cephalosporins at the used concentrations did not show anti-pseudomonal activity they were effective as anti virulent agents that could be utilized in therapeutically in controlling Pseudomonas aeruginosa infections.


2001 ◽  
Vol 67 (4) ◽  
pp. 1865-1873 ◽  
Author(s):  
Teresa R. De Kievit ◽  
Richard Gillis ◽  
Steve Marx ◽  
Chris Brown ◽  
Barbara H. Iglewski

ABSTRACT Acylated homoserine lactone molecules are used by a number of gram-negative bacteria to regulate cell density-dependent gene expression by a mechanism known as quorum sensing (QS). InPseudomonas aeruginosa, QS or cell-to-cell signaling controls expression of a number of virulence factors, as well as biofilm differentiation. In this study, we investigated the role played by the las and rhl QS systems during the early stages of static biofilm formation when cells are adhering to a surface and forming microcolonies. These studies revealed a marked difference in biofilm formation between the PAO1 parent and the QS mutants when glucose, but not citrate, was used as the sole carbon source. To further elucidate the contribution of lasI andrhlI to biofilm maturation, we utilized fusions to unstable green fluorescent protein in concert with confocal microscopy to perform real-time temporal and spatial studies of these genes in a flowing environment. During the course of 8-day biofilm development,lasI expression was found to progressively decrease over time. Conversely, rhlI expression remained steady throughout biofilm development but occurred in a lower percentage of cells. Spatial analysis revealed that lasI andrhlI were maximally expressed in cells located at the substratum and that expression decreased with increasing biofilm height. Because QS was shown previously to be involved in biofilm differentiation, these findings have important implications for the design of biofilm prevention and eradication strategies.


Sign in / Sign up

Export Citation Format

Share Document