scholarly journals Folding and trimerization of signal sequence-less mature TolC in the cytoplasm of Escherichia coli

Microbiology ◽  
2009 ◽  
Vol 155 (6) ◽  
pp. 1847-1857 ◽  
Author(s):  
Muriel Masi ◽  
Guillaume Duret ◽  
Anne H. Delcour ◽  
Rajeev Misra

TolC is a multifunctional outer-membrane protein (OMP) of Escherichia coli that folds into a unique α/β-barrel structure. Previous studies have shown that unlike the biogenesis of β-barrel OMPs, such as porins, TolC assembles independently from known periplasmic folding factors. Yet, the assembly of TolC, like that of β-barrel OMPs, is dependent on BamA and BamD, two essential components of the β-barrel OMP assembly machinery. We have investigated the folding properties and cellular trafficking of a TolC derivative that lacks the entire signal sequence (TolCΔ2–22). A significant amount of TolCΔ2–22 was found to be soluble in the cytoplasm, and a fraction of it folded and trimerized into a conformation similar to that of the normal outer membrane-localized TolC protein. Some TolCΔ2–22 was found to associate with membranes, but failed to assume a wild-type-like folded conformation. The null phenotype of TolCΔ2–22 was exploited to isolate suppressor mutations, the majority of which mapped in secY. In the secY suppressor background, TolCΔ2–22 resumed normal function and folded like wild-type TolC. Proper membrane insertion could not be achieved upon in vitro incubation of cytoplasmically folded TolCΔ2–22 with purified outer membrane vesicles, showing that even though TolC is intrinsically capable of folding and trimerization, for successful integration into the outer membrane these events need to be tightly coupled to the insertion process, which is mediated by the Bam machinery. Genetic and biochemical data attribute the unique folding and assembly pathways of TolC to its large soluble α-helical domain.

2010 ◽  
Vol 192 (22) ◽  
pp. 5934-5942 ◽  
Author(s):  
Aurélie Barnéoud-Arnoulet ◽  
Marthe Gavioli ◽  
Roland Lloubès ◽  
Eric Cascales

ABSTRACT Colicins are bacterial antibiotic toxins produced by Escherichia coli cells and are active against E. coli and closely related strains. To penetrate the target cell, colicins bind to an outer membrane receptor at the cell surface and then translocate their N-terminal domain through the outer membrane and the periplasm. Once fully translocated, the N-terminal domain triggers entry of the catalytic C-terminal domain by an unknown process. Colicin K uses the Tsx nucleoside-specific receptor for binding at the cell surface, the OmpA protein for translocation through the outer membrane, and the TolABQR proteins for the transit through the periplasm. Here, we initiated studies to understand how the colicin K N-terminal domain (KT) interacts with the components of its transit machine in the periplasm. We first produced KT fused to a signal sequence for periplasm targeting. Upon production of KT in wild-type strains, cells became partly resistant to Tol-dependent colicins and sensitive to detergent, released periplasmic proteins, and outer membrane vesicles, suggesting that KT interacts with and titrates components of its import machine. Using a combination of in vivo coimmunoprecipitations and in vitro pulldown experiments, we demonstrated that KT interacts with the TolA, TolB, and TolR proteins. For the first time, we also identified an interaction between the TolQ protein and a colicin translocation domain.


2006 ◽  
Vol 189 (5) ◽  
pp. 1627-1632 ◽  
Author(s):  
Maria D. Bodero ◽  
M. Carolina Pilonieta ◽  
George P. Munson

ABSTRACT The expression of the inner membrane protein NlpA is repressed by the enterotoxigenic Escherichia coli (ETEC) virulence regulator Rns, a member of the AraC/XylS family. The Rns homologs CfaD from ETEC and AggR from enteroaggregative E. coli also repress expression of nlpA. In vitro DNase I and potassium permanganate footprinting revealed that Rns binds to a site overlapping the start codon of nlpA, preventing RNA polymerase from forming an open complex at nlpAp. A second Rns binding site between positions −152 and −195 relative to the nlpA transcription start site is not required for repression. NlpA is not essential for growth of E. coli under laboratory conditions, but it does contribute to the biogenesis of outer membrane vesicles. As outer membrane vesicles have been shown to contain ETEC heat-labile toxin, the repression of nlpA may be an indirect mechanism through which the virulence regulators Rns and CfaD limit the release of toxin.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nayeong Kim ◽  
Hyo Jeong Kim ◽  
Man Hwan Oh ◽  
Se Yeon Kim ◽  
Mi Hyun Kim ◽  
...  

Abstract Background Zinc uptake-regulator (Zur)-regulated lipoprotein A (ZrlA) plays a role in bacterial fitness and overcoming antimicrobial exposure in Acinetobacter baumannii. This study further characterized the zrlA gene and its encoded protein and investigated the roles of the zrlA gene in bacterial morphology, antimicrobial susceptibility, and production of outer membrane vesicles (OMVs) in A. baumannii ATCC 17978. Results In silico and polymerase chain reaction analyses showed that the zrlA gene was conserved among A. baumannii strains with 97–100% sequence homology. Recombinant ZrlA protein exhibited a specific enzymatic activity of D-alanine-D-alanine carboxypeptidase. Wild-type A. baumannii exhibited more morphological heterogeneity than a ΔzrlA mutant strain during stationary phase. The ΔzrlA mutant strain was more susceptible to gentamicin than the wild-type strain. Sizes and protein profiles of OMVs were similar between the wild-type and ΔzrlA mutant strains, but the ΔzrlA mutant strain produced 9.7 times more OMV particles than the wild-type strain. OMVs from the ΔzrlA mutant were more cytotoxic in cultured epithelial cells than OMVs from the wild-type strain. Conclusions The present study demonstrated that A. baumannii ZrlA contributes to bacterial morphogenesis and antimicrobial resistance, but its deletion increases OMV production and OMV-mediated host cell cytotoxicity.


2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Ilaria Zanella ◽  
Enrico König ◽  
Michele Tomasi ◽  
Assunta Gagliardi ◽  
Luca Frattini ◽  
...  

2017 ◽  
Vol 111 ◽  
pp. 218-224 ◽  
Author(s):  
Chandana Jha ◽  
Sujata Ghosh ◽  
Vikas Gautam ◽  
Pankaj Malhotra ◽  
Pallab Ray

2006 ◽  
Vol 59 (1) ◽  
pp. 99-112 ◽  
Author(s):  
Carlos Balsalobre ◽  
Jose Manuel Silvan ◽  
Stina Berglund ◽  
Yoshimitsu Mizunoe ◽  
Bernt Eric Uhlin ◽  
...  

2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Andreas Bauwens ◽  
Lisa Kunsmann ◽  
Helge Karch ◽  
Alexander Mellmann ◽  
Martina Bielaszewska

ABSTRACT Ciprofloxacin, meropenem, fosfomycin, and polymyxin B strongly increase production of outer membrane vesicles (OMVs) in Escherichia coli O104:H4 and O157:H7. Ciprofloxacin also upregulates OMV-associated Shiga toxin 2a, the major virulence factor of these pathogens, whereas the other antibiotics increase OMV production without the toxin. These two effects might worsen the clinical outcome of infections caused by Shiga toxin-producing E. coli. Our data support the existing recommendations to avoid antibiotics for treatment of these infections.


2018 ◽  
Vol 84 (8) ◽  
pp. e02567-17 ◽  
Author(s):  
H. Bart van den Berg van Saparoea ◽  
Diane Houben ◽  
Marien I. de Jonge ◽  
Wouter S. P. Jong ◽  
Joen Luirink

ABSTRACT The Escherichia coli virulence factor hemoglobin protease (Hbp) has been engineered into a surface display system that can be expressed to high density on live E. coli and Salmonella enterica serovar Typhimurium cells or derived outer membrane vesicles (OMVs). Multiple antigenic sequences can be genetically fused into the Hbp core structure for optimal exposure to the immune system. Although the Hbp display platform is relatively tolerant, increasing the number, size, and complexity of integrated sequences generally lowers the expression of the fused constructs and limits the density of display. This is due to the intricate mechanism of Hbp secretion across the outer membrane and the efficient quality control of translocation-incompetent chimeric Hbp molecules in the periplasm. To address this shortcoming, we explored the coupling of purified proteins to the Hbp carrier after its translocation across the outer membrane using the recently developed SpyTag/SpyCatcher protein ligation system. As expected, fusion of the small SpyTag to Hbp did not hamper display on OMVs. Subsequent addition of purified proteins fused to the SpyCatcher domain resulted in efficient covalent coupling to Hbp-SpyTag. Using in addition the orthogonal SnoopTag/SnoopCatcher system, multiple antigen modules could be coupled to Hbp in a sequential ligation strategy. Not only antigens proved suitable for Spy-mediated ligation but also nanobodies. Addition of this functionality to the platform might allow the targeting of live bacterial or OMV vaccines to certain tissues or immune cells to tailor immune responses.IMPORTANCE Outer membrane vesicles (OMVs) derived from Gram-negative bacteria attract increasing interest in the development of vaccines and therapeutic agents. We aim to construct a semisynthetic OMV platform for recombinant antigen presentation on OMVs derived from attenuated Salmonella enterica serovar Typhimurium cells displaying an adapted Escherichia coli autotransporter, Hbp, at the surface. Although this autotransporter accepts substantial modifications, its capacity with respect to the number, size, and structural complexity of the antigens genetically fused to the Hbp carrier is restricted. Here we describe the application of SpyCatcher/SpyTag protein ligation technology to enzymatically link antigens to Hbp present at high density in OMVs. Protein ligation was apparently unobstructed by the membrane environment and allowed a high surface density of coupled antigens, a property we have shown to be important for vaccine efficacy. The OMV coupling procedure appears versatile and robust, allowing fast production of experimental vaccines and therapeutic agents through a modular plug-and-display procedure.


Sign in / Sign up

Export Citation Format

Share Document