SseA is a chaperone for the SseB and SseD translocon components of the Salmonella pathogenicity-island-2-encoded type III secretion system

Microbiology ◽  
2003 ◽  
Vol 149 (5) ◽  
pp. 1103-1111 ◽  
Author(s):  
Javier Ruiz-Albert ◽  
Rosanna Mundy ◽  
Xiu-Jun Yu ◽  
Carmen R. Beuzón ◽  
David W. Holden

The type III secretion system (TTSS) encoded by the Salmonella pathogenicity island 2 (SPI-2) is required for bacterial replication inside macrophages and for systemic infection in mice. Many TTSS secreted proteins, including effectors and components of the translocon, require chaperones which promote their stability, prevent their premature interactions or facilitate their secretion. In this study, the function of the first gene (sseA) of one of the SPI-2 operons (sseA–G) was investigated. This operon includes genes that encode translocon components (SseB, SseC and SseD), translocated proteins (SseF and SseG) and putative chaperones (SscA and SscB). sseA encodes a 12·5 kDa protein with a C-terminal region with the potential to form a coiled-coil structure, but no sequence similarity to other proteins. Mutation of sseA results in severe virulence attenuation and an intracellular replication defect. It is shown here that SseA is not a secreted protein, but is required for SPI-2-dependent translocation of two effector proteins (SifA and PipB). Furthermore, the translocon components SseB and SseD were not detected in an sseA mutant strain. By using a yeast two-hybrid assay and column binding experiments, it is demonstrated that SseA interacts directly with SseB and SseD. These results indicate that SseA is a chaperone for SseB and SseD. The inability of an sseA mutant to assemble the SPI-2 TTSS translocon accounts for its high level of virulence attenuation in vivo. To the authors' knowledge, this is the first chaperone described for the SPI-2 TTSS.

2005 ◽  
Vol 187 (23) ◽  
pp. 8164-8171 ◽  
Author(s):  
Diana Ideses ◽  
Uri Gophna ◽  
Yossi Paitan ◽  
Roy R. Chaudhuri ◽  
Mark J. Pallen ◽  
...  

ABSTRACT The type III secretion system (T3SS) is an important virulence factor used by several gram-negative bacteria to deliver effector proteins which subvert host cellular processes. Enterohemorrhagic Escherichia coli O157 has a well-defined T3SS involved in attachment and effacement (ETT1) and critical for virulence. A gene cluster potentially encoding an additional T3SS (ETT2), which resembles the SPI-1 system in Salmonella enterica, was found in its genome sequence. The ETT2 gene cluster has since been found in many E. coli strains, but its in vivo role is not known. Many of the ETT2 gene clusters carry mutations and deletions, raising the possibility that they are not functional. Here we show the existence in septicemic E. coli strains of an ETT2 gene cluster, ETT2sepsis, which, although degenerate, contributes to pathogenesis. ETT2sepsis has several premature stop codons and a large (5 kb) deletion, which is conserved in 11 E. coli strains from cases of septicemia and newborn meningitis. A null mutant constructed to remove genes coding for the putative inner membrane ring of the secretion complex exhibited significantly reduced virulence. These results are the first demonstration of the importance of ETT2 for pathogenesis.


Microbiology ◽  
2011 ◽  
Vol 157 (5) ◽  
pp. 1428-1445 ◽  
Author(s):  
Devendra H. Shah ◽  
Xiaohui Zhou ◽  
Tarek Addwebi ◽  
Margaret A. Davis ◽  
Lisa Orfe ◽  
...  

Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major cause of food-borne gastroenteritis in humans worldwide. Poultry and poultry products are considered the major vehicles of transmission to humans. Using cell invasiveness as a surrogate marker for pathogenicity, we tested the invasiveness of 53 poultry-associated isolates of S. Enteritidis in a well-differentiated intestinal epithelial cell model (Caco-2). The method allowed classification of the isolates into low (n = 7), medium (n = 18) and high (n = 30) invasiveness categories. Cell invasiveness of the isolates did not correlate with the presence of the virulence-associated gene spvB or the ability of the isolates to form biofilms. Testing of representative isolates with high and low invasiveness in a mouse model revealed that the former were more invasive in vivo and caused more and earlier mortalities, whereas the latter were significantly less invasive in vivo, causing few or no mortalities. Further characterization of representative isolates with low and high invasiveness showed that most of the isolates with low invasiveness had impaired motility and impaired secretion of either flagella-associated proteins (FlgK, FljB and FlgL) or type III secretion system (TTSS)-secreted proteins (SipA and SipD) encoded on Salmonella pathogenicity island-1. In addition, isolates with low invasiveness had impaired ability to invade and/or survive within chicken macrophages. These data suggest that not all isolates of S. Enteritidis recovered from poultry may be equally pathogenic, and that the pathogenicity of S. Enteritidis isolates is associated, in part, with both motility and secretion of TTSS effector proteins.


2009 ◽  
Vol 191 (22) ◽  
pp. 6843-6854 ◽  
Author(s):  
Tsuyoshi Miki ◽  
Yoshio Shibagaki ◽  
Hirofumi Danbara ◽  
Nobuhiko Okada

ABSTRACT The type III secretion system (T3SS) encoded by Salmonella pathogenicity island 2 (SPI-2) is involved in systemic infection and intracellular replication of Salmonella enterica serovar Typhimurium. In this study, we investigated the function of SsaE, a small cytoplasmic protein encoded within the SPI-2 locus, which shows structural similarity to the T3SS class V chaperones. An S. enterica serovar Typhimurium ssaE mutant failed to secrete SPI-2 translocator SseB and SPI-2-dependent effector PipB proteins. Coimmunoprecipitation and mass spectrometry analyses using an SsaE-FLAG fusion protein indicated that SsaE interacts with SseB and a putative T3SS-associated ATPase, SsaN. A series of deleted and point-mutated SsaE-FLAG fusion proteins revealed that the C-terminal coiled-coil domain of SsaE is critical for protein-protein interactions. Although SseA was reported to be a chaperone for SseB and to be required for its secretion and stability in the bacterial cytoplasm, an sseA deletion mutant was able to secrete the SseB in vitro when plasmid-derived SseB was overexpressed. In contrast, ssaE mutant strains could not transport SseB extracellularly under the same assay conditions. In addition, an ssaE(I55G) point-mutated strain that expresses the SsaE derivative lacking the ability to form a C-terminal coiled-coil structure showed attenuated virulence comparable to that of an SPI-2 T3SS null mutant, suggesting that the coiled-coil interaction of SsaE is absolutely essential for the functional SPI-2 T3SS and for Salmonella virulence. Based on these findings, we propose that SsaE recognizes translocator SseB and controls its secretion via SPI-2 type III secretion machinery.


2003 ◽  
Vol 71 (4) ◽  
pp. 2130-2141 ◽  
Author(s):  
Bianca C. Neves ◽  
Rosanna Mundy ◽  
Liljana Petrovska ◽  
Gordon Dougan ◽  
Stuart Knutton ◽  
...  

ABSTRACT Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli are extracellular pathogens that employ a type III secretion system to export translocator and effector proteins, proteins which facilitates colonization of the mucosal surface of the intestine via formation of attaching and effacing (A/E) lesions. The genes encoding the proteins for A/E lesion formation are located on a pathogenicity island, termed the locus of enterocyte effacement (LEE), which contains eae encoding intimin as well as the type III secretion system and effector genes. Many type III secreted proteins are stabilized and maintained in a secretion-competent conformation in the bacterial cytosol by specific chaperone proteins. Three type III chaperones have been described thus far within the EPEC LEE region: CesD, for the translocator proteins EspB and EspD; CesT, for the effector proteins Tir and Map; and CesF, for EspF. In this study we report the characterization of CesD2 (previously Orf27), a second LEE-encoded chaperone for EspD. We show specific CesD2-EspD protein interaction which appears to be necessary for proper EspD secretion in vitro and pathogenesis in vivo as demonstrated in the A/E-lesion-forming mouse pathogen Citrobacter rodentium.


2006 ◽  
Vol 74 (4) ◽  
pp. 2328-2337 ◽  
Author(s):  
Michelle Kelly ◽  
Emily Hart ◽  
Rosanna Mundy ◽  
Olivier Marchès ◽  
Siouxsie Wiles ◽  
...  

ABSTRACT Attaching and effacing (A/E) pathogens are a significant cause of gastrointestinal illness in humans and animals. All A/E pathogens carry a large pathogenicity island, termed the locus for enterocyte effacement (LEE), which encodes a type III secretion system that translocates several effector proteins into host cells. To identify novel virulence determinants in A/E pathogens, we performed a signature-tagged mutagenesis screen in C57BL/6 mice by using the mouse A/E pathogen Citrobacter rodentium. Five hundred seventy-six derivatives of C. rodentium were tested in pools of 12 mutants. One attenuated mutant carried a transposon insertion in nleB, which encodes a putative effector of the LEE-encoded type III secretion system (T3SS). nleB is present in a genomic pathogenicity island that also encodes another putative effector, NleE, immediately downstream. Using translational fusions with β-lactamase (TEM-1), we showed that both NleB and NleE were translocated into host cells by the LEE-encoded T3SS of enteropathogenic Escherichia coli. In addition, deletion of the gene encoding NleB in C. rodentium resulted in reduced colonization of mice in single infections and reduced colonic hyperplasia. In contrast, the deletion of other non-LEE-encoded effector genes in C. rodentium, nleC, nleD, or nleE, had no effect on host colonization or disease. These results suggest that nleB encodes an important virulence determinant of A/E pathogens.


2001 ◽  
Vol 69 (12) ◽  
pp. 7254-7261 ◽  
Author(s):  
Carmen R. Beuzón ◽  
Kate E. Unsworth ◽  
David W. Holden

ABSTRACT Many virulence factors are required for Salmonella enterica serovar Typhimurium to replicate intracellularly and proliferate systemically within mice. In this work, we have carried out genetic analyses in vivo to determine the functional relationship between two major virulence factors necessary for systemic infection byS. enterica serovar Typhimurium: theSalmonella pathogenicity island 2 (SPI-2) type III secretion system (TTSS) and the PhoP-PhoQ two-component regulatory system. Although previous work suggested that PhoP-PhoQ regulates SPI-2 TTSS gene expression in vitro, in vivo competitive analysis of mutant strains indicates that these systems contribute independently toS. typhimurium virulence. Our results also suggest that mutation of phoP may compensate partially for defects in the SPI-2 TTSS by deregulating SPI-1 TTSS expression. These results provide an explanation for previous reports showing an apparent functional overlap between these two systems in vitro.


2004 ◽  
Vol 186 (1) ◽  
pp. 68-79 ◽  
Author(s):  
Craig D. Ellermeier ◽  
James M. Slauch

ABSTRACT Salmonella serovars cause a wide variety of diseases ranging from mild gastroenteritis to life-threatening systemic infections. An important step in Salmonella enterica serovar Typhimurium infection is the invasion of nonphagocytic epithelial cells, mediated by a type III secretion system (TTSS) encoded on Salmonella pathogenicity island 1 (SPI1). The SPI1 TTSS forms a needle complex through which effector proteins are injected into the cytosol of host cells, where they promote actin rearrangement and engulfment of the bacteria. We previously identified the Salmonella-specific regulatory protein RtsA, which induces expression of hilA and, thus, the SPI1 genes. Here we show that the hilA regulators RtsA, HilD, and HilC can each induce transcription of dsbA, which encodes a periplasmic disulfide bond isomerase. RtsA induces expression of dsbA independent of either the SPI1 TTSS or the only known regulator of dsbA, the CpxRA two-component system. We show that DsbA is required for both the SPI1 and SPI2 TTSS to translocate effector proteins into the cytosol of host cells. DsbA is also required for survival during the systemic stages of infection. We also present evidence that production of SPI1 effector proteins is coupled to assembly of the TTSS. This feedback regulation is mediated at either the transcriptional or posttranscriptional level, depending on the particular effector. Loss of DsbA leads to feedback inhibition, which is consistent with the hypothesis that disulfide bond formation plays a role in TTSS assembly or function.


1999 ◽  
Vol 67 (1) ◽  
pp. 213-219 ◽  
Author(s):  
Jacqueline E. Shea ◽  
Carmen R. Beuzon ◽  
Colin Gleeson ◽  
Rosanna Mundy ◽  
David W. Holden

ABSTRACT We have investigated the in vivo growth kinetics of aSalmonella typhimurium strain (P11D10) carrying a mutation in ssaJ, a Salmonella pathogenicity island 2 (SPI2) gene encoding a component of a type III secretion system required for systemic growth in mice. Similar numbers of mutant and wild-type cells were recovered from the spleens and livers of BALB/c mice up to 8 h after inoculation by the intraperitoneal route. Thereafter, the numbers of wild-type cells continued to increase logarithmically in these organs, whereas those of P11D10 remained relatively static for several days before being cleared. Gentamicin protection experiments on spleen cell suspensions recovered from infected mice showed that viable intracellular wild-type bacteria accumulated over time but that intracellular P11D10 cells did not. Infection experiments were also performed with wild-type and P11D10 cells carrying the temperature-sensitive plasmid pHSG422 to distinguish between bacterial growth rates and killing in vivo. At 16 h postinoculation there were 10-fold more wild-type cells than mutant cells in the spleens of infected mice, but the numbers of cells of both strains carrying the nonreplicating plasmid were very similar, showing that there was little difference in the degree of killing sustained by the two strains and that the SPI2 secretion system must be required for bacterial replication, rather than survival, in vivo. The SPI2 mutant phenotype in mice is similar to that of strains carrying mutations in the Salmonella virulence plasmid spv genes. To determine if these two sets of genes interact together, a double mutant strain carrying SPI2 and spv mutations was constructed and compared with strains carrying single mutations in terms of virulence attenuation. These experiments failed to provide any evidence showing that the SPI2 and spv gene products interact together as part of the same virulence mechanism.


2001 ◽  
Vol 183 (20) ◽  
pp. 6036-6045 ◽  
Author(s):  
Thomas Nikolaus ◽  
Jörg Deiwick ◽  
Catherine Rappl ◽  
Jeremy A. Freeman ◽  
Werner Schröder ◽  
...  

ABSTRACT The type III secretion system encoded bySalmonella pathogenicity island 2 (SPI2) is required for systemic infections and intracellular accumulation of Salmonella enterica. This system is induced by intracellularSalmonella and subsequently transfers effector proteins into the host cell. Growth conditions either inducing expression of the type III secretion system or the secretion of substrate proteins were defined. Here we report the identification of a set of substrate proteins consisting of SseB, SseC, and SseD that are secreted by the SPI2 system in vitro. Secretion was observed if bacterial cells were exposed to acidic pH after growth in minimal medium with limitation of Mg2+ or phosphate. SseB, -C, and -D were isolated in a fraction detached from the bacterial cell surface by mechanical shearing, indicating that these proteins are predominantly assembled into complexes on the bacterial cell surface. The three proteins were required for the translocation of SPI2 effector proteins SspH1 and SspH2 into infected host cells. Thus, SseB, SseC, and SseD function as the translocon for effector proteins by intracellular Salmonella.


Sign in / Sign up

Export Citation Format

Share Document