Are some putative glycogen accumulating organisms (GAO) in anaerobic : aerobic activated sludge systems members of the α-Proteobacteria?

Microbiology ◽  
2004 ◽  
Vol 150 (7) ◽  
pp. 2267-2275 ◽  
Author(s):  
Michael Beer ◽  
Yun H. Kong ◽  
Robert J. Seviour

Activated sludge plants designed to remove phosphorus microbiologically often perform unreliably. One suggestion is that the polyphosphate-accumulating organisms (PAO) are out-competed for substrates by another group of bacteria, the glycogen-accumulating organisms (GAO) in the anaerobic zones of these processes. This study used fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) to analyse the communities from laboratory-scale anaerobic : aerobic sequencing batch reactors. Members of the genus Sphingomonas in the α-Proteobacteria were present in large numbers in communities with poor phosphorus removal capacity where the biomass had a high glycogen content. Their ability to store poly-β-hydroxyalkanoates anaerobically, but not aerobically, and not accumulate polyphosphate aerobically is consistent with these organisms behaving as GAO there. No evidence was found to support an important role for the γ-Proteobacteria as possible GAO in these communities, although these bacterial populations have been considered in other studies to act as possible competitors for the PAO.

1998 ◽  
Vol 37 (4-5) ◽  
pp. 71-78 ◽  
Author(s):  
Thomas P. Curtis ◽  
Noel G. Craine

The explicit engineering of bacterial populations requires that we know which organisms perform which tasks. The comparison of the bacterial diversity of activated sludge plants may give important information about the functions of different bacteria. This difficult task may be made easier by the use of technologies based on 16S rRNA based techniques. In this study we have used denaturing gradient gel electrophoresis (DGGE) to determine the optimal sampling regime for comparative studies and used cluster analysis to show how plants may be quantitatively compared. We sought evidence of spatial, diurnal and intrasample variation in a number of sites. No evidence for variation was found in the plants studied and we concluded that a single sample of an activated sludge plant was sufficient for a plant to plant comparison. The cluster analysis was able to distinguish between plants, though further work is required to find the most appropriate basis for such comparisons. We found organisms from raw sewage in the mixed liquor samples, these organisms may have no functional significance in the treatment process and thus complicate plant to plant comparisons as will the probable presence of heteroduplex rDNA products. Nevertheless we believe that these drawbacks do not outweigh the advantages of being able to take and compare relatively large numbers of samples.


2002 ◽  
Vol 87 (S2) ◽  
pp. S199-S201 ◽  
Author(s):  
G. W. Tannock

Molecular methods have provided renewed impetus for the analysis of the composition of the intestinal microflora in health and disease. The polymerase chain reaction coupled with denaturing gradient gel electrophoresis provides a method whereby the bacterial communities in large numbers of samples can be compared efficiently and effectively. Altered bacterial populations associated with disease states can then be targeted for further investigation. In the long-term, an ‘abnormal microflora’ might be rectified by the use of probiotics or prebiotics.


2012 ◽  
Vol 610-613 ◽  
pp. 331-336
Author(s):  
Yuan Hua Xie ◽  
Tong Zhu ◽  
Xiao Jiang Liu ◽  
Hui Liu ◽  
Jin Han

An anoxic-oxic activated sludge process (AOASP) was carried out to degrade nonylphenol polyethoxylates (NPEOs). The carbon source in influent was replaced stepwise by a mixture of nonylphenol decaethoxylate (M-NP10EO). The 2nd-derivative UV-spectrometry was applied to determine the total amount of M-NP10EO in water samples. Chemical oxygen demand (COD) removal efficiency achieves about 85% under the highest M-NP10EO loading rate, and M-NP10EO removal efficiency is about 80%. Denaturing gradient gel electrophoresis (DGGE) results of activated sludges show that the microbe species decrease but gradually stabilize with the increase of M-NP10EO concentration in influent. Fluorescence in situ hybridization (FISH) results of activated sludges showe that the dominant microflora under the highest M-NP10EO loading rate is β-Proteobacteria (35%), followed by α-Proteobacteria (15%), γ-Proteobacteria (5%) and Actinobateria (4%).


2010 ◽  
Vol 82 (1) ◽  
pp. 299-306 ◽  
Author(s):  
Liang Tan ◽  
Yuanyuan Qu ◽  
Jiti Zhou ◽  
Fang Ma ◽  
Ang Li

Microbial community structures in sequencing batch reactors (SBRs) for azo dye wastewater treatment were analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Effects of dye concentration and salinity were investigated for the decolorization of both reactive brilliant red K-2G and KE-3B. The results showed that the microbial community exhibited high color removal efficiency with high concentration of K-2G (1100 mg/l) and moderate KE-3B (400 mg/l), respectively. Under high-salt conditions, decolorization of KE-3B was partially inhibited, while little effect was observed on decolorization of K-2G. The results of similarity analysis demonstrated that the DGGE banding patterns of microbial communities in K-2G and KE-3B decolorization systems were clustered into two independent groups. And it was suggested that the microbial diversities shifted proportionally with the decolorization rates for both dyes. The similarity index (Cs) of the bacterial communities under higher-salt conditions was more than those cultured with lower salinity. It was also found that microbial diversities turned out to be more abundant for both dyes with the increase of NaCl concentration. These results suggested that not only the stability but also the adequate dynamics and diversity of the microbial community structure are important for the stable performance of the SBRs treating hyper-salinity azo dye wastewater.


2000 ◽  
Vol 66 (11) ◽  
pp. 4803-4809 ◽  
Author(s):  
Kazuya Watanabe ◽  
Kanako Watanabe ◽  
Yumiko Kodama ◽  
Kazuaki Syutsubo ◽  
Shigeaki Harayama

ABSTRACT Petroleum-contaminated groundwater discharged from underground crude oil storage cavities (cavity groundwater) harbored more than 106 microorganisms ml−1, a density 100 times higher than the densities in groundwater around the cavities (control groundwater). To characterize bacterial populations growing in the cavity groundwater, 46 PCR-amplified almost full-length 16S ribosomal DNA (rDNA) fragments were cloned and sequenced, and 28 different sequences were obtained. All of the sequences were affiliated with the Proteobacteria; 25 sequences (43 clones) were affiliated with the epsilon subclass, 2 were affiliated with the beta subclass, and 1 was affiliated with the delta subclass. Two major clusters (designated clusters 1 and 2) were found for the epsilon subclass proteobacterial clones; cluster 1 (25 clones) was most closely related to Thiomicrospira denitrificans (88% identical in nucleotide sequence), while cluster 2 (11 clones) was closely related to Arcobacterspp. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rDNA fragments showed that one band was detected most strongly in cavity groundwater profiles independent of storage oil type and season. The sequence of this major band was identical to the sequences of most of the cluster 1 clones. Fluorescence in situ hybridization (FISH) indicated that the cluster 1 population accounted for 12 to 24% of the total bacterial population. This phylotype was not detected in the control groundwater by DGGE and FISH analyses. These results indicate that the novel members of the epsilon subclass of the Proteobacteria grow as major populations in the petroleum-contaminated cavity groundwater.


2016 ◽  
Vol 7 (2) ◽  
pp. 237-246 ◽  
Author(s):  
M.F. Hamet ◽  
M. Medrano ◽  
P.F. Pérez ◽  
A.G. Abraham

The activity of kefiran, the exopolysaccharide present in kefir grains, was evaluated on intestinal bacterial populations in BALB/c mice. Animals were orally administered with kefiran and Eubacteria, lactobacilli and bifidobacteria populations were monitored in faeces of mice at days 0, 2, 7, 14 and 21. Profiles obtained by Denaturing Gradient Gel Electrophoresis (DGGE) with primers for Eubacteria were compared by principal component analysis and clearly defined clusters, correlating with the time of kefiran consumption, were obtained. Furthermore, profile analysis of PCR products amplified with specific oligonucleotides for bifidobacteria showed an increment in the number of DGGE bands in the groups administered with kefiran. Fluorescent In Situ Hybridisation (FISH) with specific probes for bifidobacteria showed an increment of this population in faeces, in accordance to DGGE results. The bifidobacteria population was also studied on distal colon content after 0, 2 and 7 days of kefiran administration. Analysis of PCR products by DGGE with Eubacteria primers showed an increment in the number and intensity of bands with high GC content of mice administered with kefiran. Sequencing of DGGE bands confirmed that bifidobacteria were one of the bacterial populations modified by kefiran administration. DGGE profiles of PCR amplicons obtained by using Bifidobacterium or Lactobacillus specific primers confirmed that kefiran administration enhances bifidobacteria, however no changes were observed in Lactobacillus populations. The results of the analysis of bifidobacteria populations assessed on different sampling sites in a murine model support the use of this exopolysaccharide as a bifidogenic functional ingredient.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 984
Author(s):  
Pedro Cisterna-Osorio ◽  
Claudia Calabran-Caceres ◽  
Giannina Tiznado-Bustamante ◽  
Nataly Bastias-Toro

This research studies the incidence of the type of substrate, soluble or particulate, in the emergence, development, and inhibition of bulking in activated sludge systems. It was evaluated using the sludge volume index (SVI), mixing liquor-suspended solids (MLSS), microscopic analysis of biomass, and effluent suspended solids (ESS). In the first experiment, four sequencing batch reactors (SBRs) were fed with soluble substrate at a fixed mass, while the mass of the particulate substrate varied, as those (saccharose mass/flour mass) ratios were 3:1, 3:2, 3:3 and 3:4., with a deficit ranging from 20 to 30% compared to the ratio recommended. The four SBRs have similar MLSS, IVL, and ESS. From day 30, with a deficit from 80 to 90%, the influents have ratios 1/1 and 1/2 until 48 days. The SBRs present IVL between 600 and 730 mL/g and ESS from 370 to 440 mg/L; unlike influents with ratios 1/3 and 1/4, they present IVL between 170 and 185 mL/g, and ESS from 260 to 270 mg/L. The favorable effect of particulate matter is categorical. In the second set of experiments, two SBRs were studied: SBR 1 fed with saccharose, and SBR 2 with flour; there is a lack of nutrients causing bulking in SBRs. Once the nutrient deficiency condition is changed in day 11 to excess, after 22 days, the SVI was 190 mL/g, ESS was 360 mg/L, and MLSS was 2000 mg/L for influents with saccharose; the influent with flour, with an SVI of 80 mL/g, ESS of 100 mg/L, and MLSS of 4000 mg/L, shows faster and more consistent recovery with the particulate substrate. Therefore, the proposal is to add particulate substrate-like flour to active sludge plants facing bulking. It is a clean, innocuous and sustainable alternative to processes that use chemical reagents.


1998 ◽  
Vol 38 (1) ◽  
pp. 255-264 ◽  
Author(s):  
Germán Cuevas-Rodríguez ◽  
Óscar González-Barceló ◽  
Simón González-Martínez

This research project was conducted to analyze the performance of a SBR reactor when being fed with anaerobically fermented wastewater. Important was to determine the capacity of the system to remove nitrogen and phosphorus. Two SBR reactors, each one with a volume of 980 liters, were used: one used as fermenter and the other as activated sludge SBR. Using 8-hour cycles, the reactors were operated and studied during 269 days. The fermenter produced an effluent with an average value of 223±24 mg/l of volatile fatty acids. The activated sludge SBR was tested under 3 organic loading rates of 0.13, 0.25, and 0.35 kgCODtotal/kgTSS·d. For the three tested organic loading rates, PO4-P concentrations under 1.1 mg/l and COD between 37 and 38 mg/l were consistently achieved. Exceptionally high NH4-N influent values were measured during the time of the experimentation with the organic load of 0.25 kgCODtotal/kgTSS·d, not reaching in this case full nitrification. Denitrification was observed during the fill phase in every cycle. SVI values between 40 and 70 were determined during the experimental runs.


1999 ◽  
Vol 39 (6) ◽  
pp. 61-68 ◽  
Author(s):  
Klangduen Pochana ◽  
Jürg Keller

Experiments have been performed to gain an understanding of the conditions and processes governing the occurrence of SND in activated sludge systems. Sequencing batch reactors (SBRs) have been operated under controlled conditions using the wastewater from the first anaerobic pond in an abattoir wastewater treatment plant. Under specific circumstances, up to 95% of total nitrogen removal through SND has been found in the system. Carbon source and oxygen concentrations were found to be important process parameters. The addition of acetate as an external carbon source resulted in a significant increase of SND activity in the system. Stepwise change of DO concentration has also been observed in this study. Experiments to determine the effect of the floc size on SND have been performed in order to test the hypothesis that SND is a physical phenomenon, governed by the diffusion of oxygen into the activated sludge flocs. Initial results support this hypothesis but further experimental confirmation is still required.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9325
Author(s):  
Katarzyna Jaromin-Gleń ◽  
Roman Babko ◽  
Tatiana Kuzmina ◽  
Yaroslav Danko ◽  
Grzegorz Łagód ◽  
...  

Reduction of the greenhouse effect is primarily associated with the reduction of greenhouse gas (GHG) emissions. Carbon dioxide (CO2) is one of the gases that increases the greenhouse effect - it is responsible for about half of the greenhouse effect. Significant sources of CO2 are wastewater treatment plants (WWTPs) and waste management, with about 3% contribution to global emissions. CO2 is produced mainly in the aerobic stage of wastewater purification and is a consequence of activated sludge activity. Although the roles of activated sludge components in the purification process have been studied quite well, their quantitative contribution to CO2 emissions is still unknown. The emission of CO2 caused by prokaryotes and eukaryotes over the course of a year (taking into account subsequent seasons) in model sequencing batch reactors (SBR) is presented in this study. In this work, for the first time, we aimed to quantify this contribution of eukaryotic organisms to total CO2 emissions during the WWTP process. It is of the order of several or more ppm. The contribution of CO2 produced by different components of activated sludge in WWTPs can improve estimation of the emissions of GHGs in this area of human activity.


Sign in / Sign up

Export Citation Format

Share Document