Oral administration of kefiran exerts a bifidogenic effect on BALB/c mice intestinal microbiota

2016 ◽  
Vol 7 (2) ◽  
pp. 237-246 ◽  
Author(s):  
M.F. Hamet ◽  
M. Medrano ◽  
P.F. Pérez ◽  
A.G. Abraham

The activity of kefiran, the exopolysaccharide present in kefir grains, was evaluated on intestinal bacterial populations in BALB/c mice. Animals were orally administered with kefiran and Eubacteria, lactobacilli and bifidobacteria populations were monitored in faeces of mice at days 0, 2, 7, 14 and 21. Profiles obtained by Denaturing Gradient Gel Electrophoresis (DGGE) with primers for Eubacteria were compared by principal component analysis and clearly defined clusters, correlating with the time of kefiran consumption, were obtained. Furthermore, profile analysis of PCR products amplified with specific oligonucleotides for bifidobacteria showed an increment in the number of DGGE bands in the groups administered with kefiran. Fluorescent In Situ Hybridisation (FISH) with specific probes for bifidobacteria showed an increment of this population in faeces, in accordance to DGGE results. The bifidobacteria population was also studied on distal colon content after 0, 2 and 7 days of kefiran administration. Analysis of PCR products by DGGE with Eubacteria primers showed an increment in the number and intensity of bands with high GC content of mice administered with kefiran. Sequencing of DGGE bands confirmed that bifidobacteria were one of the bacterial populations modified by kefiran administration. DGGE profiles of PCR amplicons obtained by using Bifidobacterium or Lactobacillus specific primers confirmed that kefiran administration enhances bifidobacteria, however no changes were observed in Lactobacillus populations. The results of the analysis of bifidobacteria populations assessed on different sampling sites in a murine model support the use of this exopolysaccharide as a bifidogenic functional ingredient.

Microbiology ◽  
2004 ◽  
Vol 150 (7) ◽  
pp. 2267-2275 ◽  
Author(s):  
Michael Beer ◽  
Yun H. Kong ◽  
Robert J. Seviour

Activated sludge plants designed to remove phosphorus microbiologically often perform unreliably. One suggestion is that the polyphosphate-accumulating organisms (PAO) are out-competed for substrates by another group of bacteria, the glycogen-accumulating organisms (GAO) in the anaerobic zones of these processes. This study used fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) to analyse the communities from laboratory-scale anaerobic : aerobic sequencing batch reactors. Members of the genus Sphingomonas in the α-Proteobacteria were present in large numbers in communities with poor phosphorus removal capacity where the biomass had a high glycogen content. Their ability to store poly-β-hydroxyalkanoates anaerobically, but not aerobically, and not accumulate polyphosphate aerobically is consistent with these organisms behaving as GAO there. No evidence was found to support an important role for the γ-Proteobacteria as possible GAO in these communities, although these bacterial populations have been considered in other studies to act as possible competitors for the PAO.


2006 ◽  
Vol 73 (2) ◽  
pp. 594-604 ◽  
Author(s):  
Shabir A. Dar ◽  
Li Yao ◽  
Udo van Dongen ◽  
J. Gijs Kuenen ◽  
Gerard Muyzer

ABSTRACTHere we describe the diversity and activity of sulfate-reducing bacteria (SRB) in sulfidogenic bioreactors by using the simultaneous analysis of PCR products obtained from DNA and RNA of the 16S rRNA and dissimilatory sulfite reductase (dsrAB) genes. We subsequently analyzed the amplified gene fragments by using denaturing gradient gel electrophoresis (DGGE). We observed fewer bands in the RNA-based DGGE profiles than in the DNA-based profiles, indicating marked differences in the populations present and in those that were metabolically active at the time of sampling. Comparative sequence analyses of the bands obtained from rRNA anddsrBDGGE profiles were congruent, revealing the same SRB populations. Bioreactors that received either ethanol or isopropanol as an energy source showed the presence of SRB affiliated withDesulfobulbus rhabdoformisand/orDesulfovibrio sulfodismutans, as well as SRB related to the acetate-oxidizingDesulfobacca acetoxidans. The reactor that received wastewater containing a diverse mixture of organic compounds showed the presence of nutritionally versatile SRB affiliated withDesulfosarcina variabilisand another acetate-oxidizing SRB, affiliated withDesulfoarculus baarsii. In addition to DGGE analysis, we performed whole-cell hybridization with fluorescently labeled oligonucleotide probes to estimate the relative abundances of the dominant sulfate-reducing bacterial populations.Desulfobacca acetoxidans-like populations were most dominant (50 to 60%) relative to the total SRB communities, followed byDesulfovibrio-like populations (30 to 40%), andDesulfobulbus-like populations (15 to 20%). This study is the first to identify metabolically active SRB in sulfidogenic bioreactors by using the functional genedsrABas a molecular marker. The same approach can also be used to infer the ecological role of coexisting SRB in other habitats.


2000 ◽  
Vol 66 (11) ◽  
pp. 4803-4809 ◽  
Author(s):  
Kazuya Watanabe ◽  
Kanako Watanabe ◽  
Yumiko Kodama ◽  
Kazuaki Syutsubo ◽  
Shigeaki Harayama

ABSTRACT Petroleum-contaminated groundwater discharged from underground crude oil storage cavities (cavity groundwater) harbored more than 106 microorganisms ml−1, a density 100 times higher than the densities in groundwater around the cavities (control groundwater). To characterize bacterial populations growing in the cavity groundwater, 46 PCR-amplified almost full-length 16S ribosomal DNA (rDNA) fragments were cloned and sequenced, and 28 different sequences were obtained. All of the sequences were affiliated with the Proteobacteria; 25 sequences (43 clones) were affiliated with the epsilon subclass, 2 were affiliated with the beta subclass, and 1 was affiliated with the delta subclass. Two major clusters (designated clusters 1 and 2) were found for the epsilon subclass proteobacterial clones; cluster 1 (25 clones) was most closely related to Thiomicrospira denitrificans (88% identical in nucleotide sequence), while cluster 2 (11 clones) was closely related to Arcobacterspp. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rDNA fragments showed that one band was detected most strongly in cavity groundwater profiles independent of storage oil type and season. The sequence of this major band was identical to the sequences of most of the cluster 1 clones. Fluorescence in situ hybridization (FISH) indicated that the cluster 1 population accounted for 12 to 24% of the total bacterial population. This phylotype was not detected in the control groundwater by DGGE and FISH analyses. These results indicate that the novel members of the epsilon subclass of the Proteobacteria grow as major populations in the petroleum-contaminated cavity groundwater.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 71-78 ◽  
Author(s):  
Thomas P. Curtis ◽  
Noel G. Craine

The explicit engineering of bacterial populations requires that we know which organisms perform which tasks. The comparison of the bacterial diversity of activated sludge plants may give important information about the functions of different bacteria. This difficult task may be made easier by the use of technologies based on 16S rRNA based techniques. In this study we have used denaturing gradient gel electrophoresis (DGGE) to determine the optimal sampling regime for comparative studies and used cluster analysis to show how plants may be quantitatively compared. We sought evidence of spatial, diurnal and intrasample variation in a number of sites. No evidence for variation was found in the plants studied and we concluded that a single sample of an activated sludge plant was sufficient for a plant to plant comparison. The cluster analysis was able to distinguish between plants, though further work is required to find the most appropriate basis for such comparisons. We found organisms from raw sewage in the mixed liquor samples, these organisms may have no functional significance in the treatment process and thus complicate plant to plant comparisons as will the probable presence of heteroduplex rDNA products. Nevertheless we believe that these drawbacks do not outweigh the advantages of being able to take and compare relatively large numbers of samples.


1999 ◽  
Vol 65 (2) ◽  
pp. 396-403 ◽  
Author(s):  
George A. Kowalchuk ◽  
Zinaida S. Naoumenko ◽  
Piet J. L. Derikx ◽  
Andreas Felske ◽  
John R. Stephen ◽  
...  

ABSTRACT Although the practice of composting animal wastes for use as biofertilizers has increased in recent years, little is known about the microorganisms responsible for the nitrogen transformations which occur in compost and during the composting process. Ammonia is the principle available nitrogenous compound in composting material, and the conversion of this compound to nitrite in the environment by chemolithotrophic ammonia-oxidizing bacteria is an essential step in nitrogen cycling. Therefore, the distribution of ammonia-oxidizing members of the β subdivision of the class Proteobacteriain a variety of composting materials was assessed by amplifying 16S ribosomal DNA (rDNA) and 16S rRNA by PCR and reverse transcriptase PCR (RT-PCR), respectively. The PCR and RT-PCR products were separated by denaturing gradient gel electrophoresis (DGGE) and were identified by hybridization with a hierarchical set of oligonucleotide probes designed to detect ammonia oxidizer-like sequence clusters in the genera Nitrosospira and Nitrosomonas. Ammonia oxidizer-like 16S rDNA was detected in almost all of the materials tested, including industrial and experimental composts, manure, and commercial biofertilizers. A comparison of the DGGE and hybridization results after specific PCR and RT-PCR suggested that not all of the different ammonia oxidizer groups detected in compost are equally active. amoA, the gene encoding the active-site-containing subunit of ammonia monooxygenase, was also targeted by PCR, and template concentrations were estimated by competitive PCR. Detection of ammonia-oxidizing bacteria in the composts tested suggested that such materials may not be biologically inert with respect to nitrification and that the fate of nitrogen during composting and compost storage may be affected by the presence of these organisms.


2003 ◽  
Vol 228 (4) ◽  
pp. 424-433 ◽  
Author(s):  
Bart Deplancke ◽  
Kai Finster ◽  
W Vallen Graham ◽  
Chad T. Collier ◽  
Joel E. Thurmond ◽  
...  

There is increasing evidence that hydrogen sulfide (H2S), produced by intestinal sulfate-reducing bacteria (SRB), may be involved in the etiopathogenesis of chronic diseases such as ulcerative colitis and colorectal cancer. The activity of SRB, and thus H2S production, is likely determined by the availability of sulfur-containing compounds in the intestine. However, little is known about the impact of dietary or inorganic sulfate on intestinal sulfate and SRB-derived H2S concentrations. In this study, the effects of short-term (7 day) and long-term (1 year) inorganic sulfate supplementation of the drinking water on gastrointestinal (GI) sulfate and H2S concentrations (and thus activity of resident SRBs), and the density of large intestinal sulfomucin-containing goblet cells, were examined in C3H/HeJBir mice. Additionally, a PCR-denaturing gradient gel electrophoresis (DGGE)-based molecular ecology technique was used to examine the impact of sulfate-amended drinking water on microbial community structure throughout the GI tract. Average H2S concentrations ranged from 0.1 m M (stomach) to 1 m M (cecum). A sulfate reduction assay demonstrated in situ production of H2S throughout the GI tract, confirming the presence of SRB. However, H2S generation and concentrations were greatest in the cecum and colon. Sulfate supplementation of drinking water did not significantly increase intestinal sulfate or H2S concentrations, suggesting that inorganic sulfate is not an important modulator of intestinal H2S concentrations, although it altered the bacterial profiles of the stomach and distal colon of 1-year-old mice. This change in colonic bacterial profiles may reflect a corresponding increase in the density of sulfomucin-containing goblet cells in sulfate-supplemented compared with control mice.


2002 ◽  
Vol 87 (S2) ◽  
pp. S199-S201 ◽  
Author(s):  
G. W. Tannock

Molecular methods have provided renewed impetus for the analysis of the composition of the intestinal microflora in health and disease. The polymerase chain reaction coupled with denaturing gradient gel electrophoresis provides a method whereby the bacterial communities in large numbers of samples can be compared efficiently and effectively. Altered bacterial populations associated with disease states can then be targeted for further investigation. In the long-term, an ‘abnormal microflora’ might be rectified by the use of probiotics or prebiotics.


2013 ◽  
Vol 59 (10) ◽  
pp. 694-700 ◽  
Author(s):  
Xinyu Li ◽  
Xu Li ◽  
Jian Wang ◽  
Xiujuan Wang ◽  
Jian Sun ◽  
...  

Indigenous Mycobacterium communities play an important role in the degradation of polycyclic aromatic hydrocarbons (PAHs), but little is known about Mycobacterium distribution in situ at PAH-contaminated sites. In this study, the diversity and distribution of Mycobacterium communities were investigated in sediments and soils at sites upstream, midstream, and downstream of an oil-sewage irrigation channel, using denaturing gradient gel electrophoresis (DGGE). The results show that heavy PAH contamination in upstream sites negatively affected Mycobacterium community diversity compared with midstream and downstream sites in all 3 sample types (sediments, corn field soils, and rice field soils). There was a correlation between the distribution of Mycobacterium communities and PAH contamination, as indicated by canonical correspondence analysis. Mycobacterium diversity and distribution was found to vary between the 3 sample types.


2008 ◽  
Vol 75 (1) ◽  
pp. 286-291 ◽  
Author(s):  
Ilya V. Kublanov ◽  
Anna A. Perevalova ◽  
Galina B. Slobodkina ◽  
Aleksander V. Lebedinsky ◽  
Salima K. Bidzhieva ◽  
...  

ABSTRACT Samples of water from the hot springs of Uzon Caldera with temperatures from 68 to 87�C and pHs of 4.1 to 7.0, supplemented with proteinaceous (albumin, casein, or α- or β-keratin) or carbohydrate (cellulose, carboxymethyl cellulose, chitin, or agarose) biological polymers, were filled with thermal water and incubated at the same sites, with the contents of the tubes freely accessible to the hydrothermal fluid. As a result, several enrichment cultures growing in situ on different polymeric substrates were obtained. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene fragments obtained after PCR with Bacteria-specific primers showed that the bacterial communities developing on carbohydrates included the genera Caldicellulosiruptor and Dictyoglomus and that those developing on proteins contained members of the Thermotogales order. DGGE analysis performed after PCR with Archaea- and Crenarchaeota-specific primers showed that archaea related to uncultured environmental clones, particularly those of the Crenarchaeota phylum, were present in both carbohydrate- and protein-degrading communities. Five isolates obtained from in situ enrichments or corresponding natural samples of water and sediments represented the bacterial genera Dictyoglomus and Caldanaerobacter as well as new archaea of the Crenarchaeota phylum. Thus, in situ enrichment and consequent isolation showed the diversity of thermophilic prokaryotes competing for biopolymers in microbial communities of terrestrial hot springs.


Sign in / Sign up

Export Citation Format

Share Document