erythronium japonicum
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 1)

Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3809
Author(s):  
Dong Wook Lim ◽  
Joon Park ◽  
Daeseok Han ◽  
Jaekwang Lee ◽  
Yun Tai Kim ◽  
...  

Neuroinflammation is associated with an increased risk of depression. Lipopolysaccharide (LPS) treatment is known to induce pro-inflammatory cytokine secretion and a depressive-like phenotype in mice. Although Erythronium japonicum exhibits various health benefits, the role of E. japonicum extract (EJE) in inflammation-associated depression is unknown. This study aimed to explore the anti-inflammatory effect of EJE on LPS-induced depressive symptoms in mice using the open field test (OFT), passive avoidance test (PAT), tail suspension test (TST), and forced swim test (FST). LPS-treated mice had significantly increased immobility time in the TST and FST, decreased step-through latency time in the PAT, and decreased locomotor activity in the OFT. However, administration of 100 and 300 mg/kg of EJE significantly improved these depressive-like behaviors. EJE also prevented the increase in mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and monocyte chemoattractant protein-1 (MCP-1), and the decrease in IL-10 levels by inhibiting nuclear factor-κB (NF-κB) subunit p65 phosphorylation. Additionally, LPS-treated mice showed markedly decreased brain-derived neurotrophic factor (BDNF) levels and phosphorylation of phosphoinositide 3-kinase (PI3K) and Akt, while EJE treatment significantly increased these levels in the hippocampus. These results suggest that EJE ameliorated LPS-induced depressive-like behavior by reducing LPS-induced neuroinflammation and activating the BDNF-PI3K/Akt pathway.


2020 ◽  
Vol 50 (1) ◽  
Author(s):  
Seunghyun Kim ◽  
Hee-Ock Boo ◽  
Taeho Ahn ◽  
Chun-Sik Bae

AbstractErythronium japonicum (E. japonicum) and Corylopsis coreana Uyeki (C. coreana Uyeki, Korean winter hazel) have been shown to significantly decrease 1,3-dichloro-2-propanol (1,3-DCP)-induced generation of reactive oxygen species and CYP2E1 activity in HuH7, human hepatocytes. In this study, we expanded upon the previous study and investigated the effects of E. japonicum and C. coreana Uyeki extracts on 1,3-DCP-induced liver damage in rats. The pre-treatment of rats with these extracts alleviated a decrease in body weight and reduced 1,3-DCP-induced increase in catalytic activities of hepatic enzymes, such as aspartate aminotransferase and alanine aminotransferase, in the serum. Moreover, treatment with the extracts restored the 1,3-DCP-induced decreases in anti-oxidant enzyme activities, such as the activities of superoxide dismutase and catalase, in the rat liver. Histopathological studies also strongly supported the results of enzyme activities. These results suggest a possibility that the extracts of E. japonicum and C. coreana Uyeki can be a remedy for alleviating 1,3-DCP-induced liver damage in animals.


2020 ◽  
Author(s):  
Chun-Sik Bae ◽  
Seunghyun Kim ◽  
Hee-Ock Boo ◽  
Taeho Ahn

Abstract Erythronium japonicum (E. japonicum) and Corylopsis coreana Uyeki (C. coreana Uyeki, Korean winter hazel) have been shown to significantly decrease 1,3-dichloro-2-propanol (1,3-DCP)-induced generation of reactive oxygen species and CYP2E1 activity in HuH7, human hepatocytes. In this study, we expanded upon the previous study and investigated the effects of E. japonicum and C. coreana Uyeki extracts on 1,3-DCP-induced liver damage in rats. The pre-treatment of rats with these extracts alleviated a decrease in body weight and reduced 1,3-DCP-induced increase in catalytic activities of hepatic enzymes, such as aspartate aminotransferase and alanine aminotransferase, in the serum. Moreover, treatment with the extracts restored the 1,3-DCP-induced decreases in anti-oxidant enzyme activities, such as the activities of superoxide dismutase and catalase, in the rat liver. Histopathological studies also strongly supported the results of enzyme activities.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 626 ◽  
Author(s):  
Joon Park ◽  
Yun Tai Kim

Microglial activation-mediated neuroinflammation influences the development of inflammatory pain. The aim of this study was to investigate the anti-inflammatory effects and mechanisms of aqueous Erythronium japonicum extract (EJE) in microglia activation-mediated inflammatory pain. EJE was found to suppress lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), ionized calcium-binding adapter molecule 1 (IBA-1), and pro-inflammatory cytokines in BV2 microglial cells. In addition, LPS-induced c-Jun NH2 terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) phosphorylation were inhibited by EJE. Intriguingly, EJE also inhibited p65 phosphorylation by activating extracellular signal-regulated kinase-1/2 (ERK)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Furthermore, the effects of EJE treatment, such as HO-1 induction and the reduction of NF-ĸB activation, were reversed by ERK1/2 inhibition. In an inflammatory pain mouse model, Complete Freund’s Adjuvant (CFA)-induced mechanical allodynia and foot swelling were alleviated by the oral administration of EJE. Consistent with in vitro results, EJE increased HO-1, while decreasing CFA-induced COX-2, IBA-1, and pro-inflammatory cytokines in the spinal cord. Among the components of EJE, butanol most heavily suppressed LPS-induced microglial activation and increased HO-1 expression. These findings indicate that EJE can alleviate inflammatory pain by inhibiting p38 and JNK and by suppressing NF-ĸB via ERK/Nrf2/HO-1 signaling.


2018 ◽  
Vol 08 (01) ◽  
pp. 105-116
Author(s):  
Yumiko Kanazawa ◽  
Junko Abe ◽  
Shinji Kobayashi ◽  
Kazue Shibuya ◽  
Kojiro Suzuki

2016 ◽  
Vol 37 (5) ◽  
pp. 1221-1228 ◽  
Author(s):  
JI-HYE SEO ◽  
MI-AE BANG ◽  
GYEYEOP KIM ◽  
SEUNG SIK CHO ◽  
DAE-HUN PARK

2015 ◽  
Vol 18 (5) ◽  
pp. 345-351 ◽  
Author(s):  
Yun Jum Park ◽  
◽  
Yang Gyu Ku ◽  
Na Ru Kang ◽  
Ja Yong Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document