scholarly journals Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria

Microbiology ◽  
2006 ◽  
Vol 152 (6) ◽  
pp. 1819-1826 ◽  
Author(s):  
Satu Vesterlund ◽  
Matti Karp ◽  
Seppo Salminen ◽  
Arthur C. Ouwehand

There is increasing evidence that Staphylococcus aureus may colonize the intestinal tract, especially among hospitalized patients. As Staph. aureus has been found to be associated with certain gastrointestinal diseases, it has become important to study whether this bacterium can colonize the intestinal tract and if so, whether it is possible to prevent colonization. Adhesion is the first step in colonization; this study shows that Staph. aureus adheres to mucus from resected human intestinal tissue. Certain lactic acid bacteria (LAB), mainly commercial probiotics, were able to reduce adhesion and viability of adherent Staph. aureus. In displacement assays the amount of adherent Staph. aureus in human intestinal mucus was reduced 39–44 % by Lactobacillus rhamnosus GG, Lactococcus lactis subsp. lactis and Propionibacterium freudenreichii subsp. shermanii. Moreover, adherent Lactobacillus reuteri, Lc. lactis and P. freudenreichii reduced viability of adherent Staph. aureus by 27–36 %, depending on the strain, after 2 h incubation. This was probably due to the production of organic acids and hydrogen peroxide and possibly in the case of L. reuteri to the production of reuterin. This study shows for the first time that Staph. aureus can adhere to human intestinal mucus and adherent bacteria can be displaced and killed by certain LAB strains via in situ production of antimicrobial substances.

2019 ◽  
Vol 7 (10) ◽  
pp. 407 ◽  
Author(s):  
Hadar Kimelman ◽  
Moshe Shemesh

Live probiotic bacteria obtained with food are thought to have beneficial effects on a mammalian host, including their ability to reduce intestinal colonization by pathogens. To ensure the beneficial effects, the probiotic cells must survive processing and storage of food, its passage through the upper gastrointestinal tract (GIT), and subsequent chemical ingestion processes until they reach their target organ. However, there is considerable loss of viability of the probiotic bacteria during the drying process, in the acidic conditions of the stomach, and in the high bile concentration in the small intestine. Bacillus subtilis, a spore-forming probiotic bacterium, can effectively maintain a favorable balance of microflora in the GIT. B. subtilis produces a protective extracellular matrix (ECM), which is shared with other probiotic bacteria; thus, it was suggested that this ECM could potentially protect an entire community of probiotic cells against unfavorable environmental conditions. Consequently, a biofilm-based bio-coating system was developed that would enable a mutual growth of B. subtilis with different lactic acid bacteria (LAB) through increasing the ECM production. Results of the study demonstrate a significant increase in the survivability of the bio-coated LAB cells during the desiccation process and passage through the acidic environment. Thus, it provides evidence about the ability of B. subtilis in rescuing the desiccation-sensitive LAB, for instance, Lactobacillus rhamnosus, from complete eradication. Furthermore, this study demonstrates the antagonistic potential of the mutual probiotic system against pathogenic bacteria such as Staphylococcus aureus. The data show that the cells of B. subtilis possess robust anti-biofilm activity against S. aureus through activating the antimicrobial lipopeptide production pathway.


2019 ◽  
Vol 2 (1) ◽  
pp. 54-60
Author(s):  
Siti Nur Purwandhani

Lactic acid bacteria has potential as health-supporting agent because of its role as probiotic that has capability to grow in gastrointestinal tract, and its metabolites/cell components that have health benefits. Health benefits of lactic acid bacteria include balancing intestinal microflora so it can play a role in treating diarrhea, preventing cancer, lowering serum cholesterol, treating lactose intolerant, and preventing constipation. In terms of nutritional value, lactic acid bacteria is capable of increasing the biological value of milk protein, synthesizing vitamin B, inhibiting antinutrient compound, inhibiting toxins production, and producing antimicrobial substances. Examples of lactic acid bacteria strain that can be used as a probiotic are Lactobacillus reuteri, Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus casei.


2006 ◽  
Vol 73 (3) ◽  
pp. 1005-1009 ◽  
Author(s):  
Mark S. Turner ◽  
Raquel Lo ◽  
Philip M. Giffard

ABSTRACT Lactobacillus reuteri inhibits Staphylococcus aureus growth on Baird-Parker agar. This activity required the presence of tellurite and was not shared with other lactic acid bacteria or an L. reuteri mutant defective in cystine metabolism. Secreted products generated from L. reuteri cystine metabolism and thiols were shown to augment tellurite toxicity.


2003 ◽  
Vol 10 (4) ◽  
pp. 643-646 ◽  
Author(s):  
Arthur C. Ouwehand ◽  
Seppo Salminen ◽  
Peter J. Roberts ◽  
Jari Ovaska ◽  
Eeva Salminen

ABSTRACT Their adhesion to the intestinal mucosa is considered one of the main reasons for the beneficial health effects of specific lactic acid bacteria (LAB). However, the influence of disease on the mucosal adhesion is largely unknown. Adhesion of selected LAB to resected colonic tissue and mucus was determined in patients with three major intestinal diseases (i.e., diverticulitis, rectal carcinoma, and inflammatory bowel disease) and compared to healthy control tissue. All strains were observed to adhere better to immobilized mucus than to whole intestinal tissue. Two strains (Lactobacillus rhamnosus strain GG and L. reuteri) were found to exhibit disease-specific adhesion to intestinal tissue. All tested strains, with the exception of L. rhamnosus strain GG, displayed disease-specific adhesion to intestinal mucus. These results suggest that strains with optimal binding characteristics for a particular intestinal disease can be selected.


2014 ◽  
Vol 66 (1) ◽  
pp. 179-192 ◽  
Author(s):  
Amarela Terzic-Vidojevic ◽  
Sanja Mihajlovic ◽  
Gordana Uzelac ◽  
Natasa Golic ◽  
Dj. Fira ◽  
...  

The aim of this study was to identify and characterize the lactic acid bacteria (LAB) of artisanal Golija raw and cooked cows? milk cheeses traditionally manufactured without the addition of starter culture. A total of 188 Gram-positive and catalase-negative isolates of Golija cheeses were obtained from seven samples of different ripening time. Phenotypebased assays as well as rep-PCR and 16S rDNA sequence analysis were undertaken for all 188 Lstrains. The most diverse species were isolated from 20-day-old BGGO8 cheese (Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus casei/paracasei, Lactobacillus sucicola, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. lactis bv. diacetylactis, Enterococcus faecium, Enterococcus durans and Leuconostoc mesenteroides). In other Golija cheeses Lactobacillus reuteri, Lactobacillus curvatus, Lactobacillus rhamnosus, Lactococcus lactis subsp. cremoris, Lactococcus garvieae, Streptococcus thermophilus and Leuconostoc pseudomesenteroides were found. Pronounced antimicrobial properties showed enterococci (13/42) and lactococci (12/31), while the good proteolytic activity demonstrated lactococci (13/31) and lactobacilli (10/29).


2018 ◽  
Vol 7 (17) ◽  
Author(s):  
Dongjun Kim ◽  
Mun-ju Cho ◽  
Seungchan Cho ◽  
Yongjun Lee ◽  
Sung June Byun ◽  
...  

Lactic acid bacteria (LAB) are generally recognized as safe (GRAS) and serve as probiotic bacteria when consumed in adequate amounts. Here, we report the complete genome sequence of Lactobacillus reuteri Byun-re-01, isolated from mouse small intestine.


2009 ◽  
Vol 72 (8) ◽  
pp. 1739-1743 ◽  
Author(s):  
HAMPARSUN HAMPIKYAN

Sucuk is a fermented sausage widely consumed in Turkey. The ability of different concentrations of nisin to inhibit Staphylococcus aureus in artificially contaminated sucuk was examined. Sucuk dough was prepared, inoculated with S. aureus ATCC 25923 at a level of 106 CFU/g, and then divided into six equal portions to which different concentrations of nisin (0, 25, 50, 100, 150, 200 μg/g) were added. Microbiological (S. aureus, total mesophilic aerobic bacteria, and lactic acid bacteria) and physicochemical (pH, water activity, and moisture) analyses were conducted initially and after 1, 3, 5, 10, 15, 20, 25, 30, 35, and 45 days. S. aureus populations decreased to below detectable limits in sucuk containing 200 or 150 μg of nisin per g after 30 and 35 days of storage, respectively, whereas S. aureus populations in 45-day-old sucuk containing 0, 25, 50, and 100 μg of nisin per g were 5.36, 5.68, 4.10, and 3.54 log CFU/g, respectively. Hence, the addition of nisin at 150 μg/g or greater to sucuk dough can be used to prevent the growth of S. aureus in sucuk during fermentation and subsequent storage.


Sign in / Sign up

Export Citation Format

Share Document