scholarly journals Discovery and initial analysis of novel viral genomes in the soybean cyst nematode

2011 ◽  
Vol 92 (8) ◽  
pp. 1870-1879 ◽  
Author(s):  
Sadia Bekal ◽  
Leslie L. Domier ◽  
Terry L. Niblack ◽  
Kris N. Lambert

Nematodes are the most abundant multicellular animals on earth, yet little is known about their natural viral pathogens. To date, only two nematode virus genomes have been reported. Consequently, nematode viruses have been overlooked as important biotic factors in the study of nematode ecology. Here, we show that one plant parasitic nematode species, Heterodera glycines, the soybean cyst nematode (SCN), harbours four different RNA viruses. The nematode virus genomes were discovered in the SCN transcriptome after high-throughput sequencing and assembly. All four viruses have negative-sense RNA genomes, and are distantly related to nyaviruses and bornaviruses, rhabdoviruses, bunyaviruses and tenuiviruses. Some members of these families replicate in and are vectored by insects, and can cause significant diseases in animals and plants. The novel viral sequences were detected in both eggs and the second juvenile stage of SCN, suggesting that these viruses are transmitted vertically. While there was no evidence of integration of viral sequences into the nematode genome, we indeed detected transcripts from these viruses by using quantitative PCR. These data are the first finding of virus genomes in parasitic nematodes. This discovery highlights the need for further exploration for nematode viruses in all tropic groups of these diverse and abundant animals, to determine how the presence of these viruses affects the fitness of the nematode, strategies of viral transmission and mechanisms of viral pathogenesis.

Database ◽  
2019 ◽  
Vol 2019 ◽  
Author(s):  
Rick Masonbrink ◽  
Tom R Maier ◽  
Arun S Seetharam ◽  
Parijat S Juvale ◽  
Levi Baber ◽  
...  

AbstractSoybean is an important worldwide crop, and farmers continue to experience significant yield loss due to the soybean cyst nematode (SCN), Heterodera glycines. This soil-borne roundworm parasite is rated the most important pathogen problem in soybean production. The infective nematodes enter into complex interactions with their host plant by inducing the development of specialized plant feeding cells that provide the parasites with nourishment. Addressing the SCN problem will require the development of genomic resources and a global collaboration of scientists to analyze and use these resources. SCNBase.org was designed as a collaborative hub for the SCN genome. All data and analyses are downloadable and can be analyzed with three integrated genomic tools: JBrowse, Feature Search and BLAST. At the time of this writing, a number of genomic and transcriptomic data sets are already available, with 43 JBrowse tracks and 21 category pages describing SCN genomic analyses on gene predictions, transcriptome and read alignments, effector-like genes, expansion and contraction of genomic repeats, orthology and synteny with related nematode species, Single Nucleotide Polymorphism (SNPs) from 15 SCN populations and novel splice sites. Standard functional gene annotations were supplemented with orthologous gene annotations using a comparison to nine related plant-parasitic nematodes, thereby enabling functional annotations for 85% of genes. These annotations led to a greater grasp on the SCN effectorome, which include over 3324 putative effector genes. By designing SCNBase as a hub, future research findings and genomic resources can easily be uploaded and made available for use by others with minimal needs for further curation. By providing these resources to nematode research community, scientists will be empowered to develop novel, more effective SCN management tools.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1304
Author(s):  
Nicolás Bejerman ◽  
Ralf G. Dietzgen ◽  
Humberto Debat

Rhabdoviruses infect a large number of plant species and cause significant crop diseases. They have a negative-sense, single-stranded unsegmented or bisegmented RNA genome. The number of plant-associated rhabdovirid sequences has grown in the last few years in concert with the extensive use of high-throughput sequencing platforms. Here, we report the discovery of 27 novel rhabdovirus genomes associated with 25 different host plant species and one insect, which were hidden in public databases. These viral sequences were identified through homology searches in more than 3000 plant and insect transcriptomes from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) using known plant rhabdovirus sequences as the query. The identification, assembly and curation of raw SRA reads resulted in sixteen viral genome sequences with full-length coding regions and ten partial genomes. Highlights of the obtained sequences include viruses with unique and novel genome organizations among known plant rhabdoviruses. Phylogenetic analysis showed that thirteen of the novel viruses were related to cytorhabdoviruses, one to alphanucleorhabdoviruses, five to betanucleorhabdoviruses, one to dichorhaviruses and seven to varicosaviruses. These findings resulted in the most complete phylogeny of plant rhabdoviruses to date and shed new light on the phylogenetic relationships and evolutionary landscape of this group of plant viruses. Furthermore, this study provided additional evidence for the complexity and diversity of plant rhabdovirus genomes and demonstrated that analyzing SRA public data provides an invaluable tool to accelerate virus discovery, gain evolutionary insights and refine virus taxonomy.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2006
Author(s):  
Anna Y Budkina ◽  
Elena V Korneenko ◽  
Ivan A Kotov ◽  
Daniil A Kiselev ◽  
Ilya V Artyushin ◽  
...  

According to various estimates, only a small percentage of existing viruses have been discovered, naturally much less being represented in the genomic databases. High-throughput sequencing technologies develop rapidly, empowering large-scale screening of various biological samples for the presence of pathogen-associated nucleotide sequences, but many organisms are yet to be attributed specific loci for identification. This problem particularly impedes viral screening, due to vast heterogeneity in viral genomes. In this paper, we present a new bioinformatic pipeline, VirIdAl, for detecting and identifying viral pathogens in sequencing data. We also demonstrate the utility of the new software by applying it to viral screening of the feces of bats collected in the Moscow region, which revealed a significant variety of viruses associated with bats, insects, plants, and protozoa. The presence of alpha and beta coronavirus reads, including the MERS-like bat virus, deserves a special mention, as it once again indicates that bats are indeed reservoirs for many viral pathogens. In addition, it was shown that alignment-based methods were unable to identify the taxon for a large proportion of reads, and we additionally applied other approaches, showing that they can further reveal the presence of viral agents in sequencing data. However, the incompleteness of viral databases remains a significant problem in the studies of viral diversity, and therefore necessitates the use of combined approaches, including those based on machine learning methods.


Plant Disease ◽  
2021 ◽  
Author(s):  
Mariola Usovsky ◽  
Robert Robbins ◽  
Juliet Fultz Wilkes ◽  
Devany Crippen ◽  
Vijay Shankar ◽  
...  

Plant parasitic nematodes are a major yield-limiting factor of soybean in the United States and Canada. It has been indicated that soybean cyst nematode (SCN, Heterodera glycines Ichinohe) and reniform nematode (RN, Rotylenchulus reniformis Linford and Oliveira) resistance could be genetically related. For many years fragmentary data has shown this relationship. This report evaluates RN reproduction on 418 plant introductions (PIs) selected from the USDA Soybean Germplasm Collection with reported SCN resistance. The germplasm was divided into two tests of 214 PIs reported as resistant, and 204 PIs moderately resistant to SCN. The defining and reporting of RN resistance changed several times in the last 30 years, causing inconsistencies in RN resistance classification among multiple experiments. Comparison of four RN resistance classification methods was performed: (1) ≤10% as compared to the susceptible check, (2) using normalized reproduction index (RI) values, and transformed data (3) log10 (x) and (4) log10 (x+1), in an optimal univariate k-means clustering analysis. The method of transformed data log10 (x) was selected as the most accurate for classification of RN resistance. Among 418 PIs with reported SCN resistance, the log10 (x) method grouped 59 PIs (15%) as resistant, and 130 PIs (31%) as moderately resistant to RN. Genotyping of a subset of the most resistant PIs to both nematode species revealed their strong correlation with rhg1-a allele. This research identified genotypes with resistance to two nematode species and potential new sources of RN resistance that could be valuable to breeders in developing resistant cultivars.


2021 ◽  
pp. 394-399
Author(s):  
Matthias Daub

Abstract The beet cyst nematode (BCN) was one of the first discovered plant parasitic nematodes. Heterodera schachtii was observed in 1859 in Halle in Central Germany by the botanist Herman Schacht and described later by Adolf Schmidt in 1871, who named this cyst nematode species after its original discoverer. Partly due to the lack of knowledge about the effect of sugar beet monocultures on the population build-up of BCN, this nematode had a devastating impact on sugar production in 1876 that led to the shutdown of 24 sugar factories in Germany. This chapter discusses the economic importance, distribution, host range, damage symptoms, biology and life cycle, interactions with other nematodes and pathogens, recommended integrated management, and management optimization of H. schachtii. Future research requirements and future developments are also mentioned.


2019 ◽  
Vol 20 (22) ◽  
pp. 5634 ◽  
Author(s):  
Piao Lei ◽  
Bing Han ◽  
Yuanyuan Wang ◽  
Xiaofeng Zhu ◽  
Yuanhu Xuan ◽  
...  

Soybean cyst nematode (SCN) causes heavy losses to soybean yield. In order to investigate the roles of soybean miRNAs during the early stages of infection (1 and 5 dpi), 24 small RNA libraries were constructed from SCN resistant cultivar Huipizhi (HPZ) and the susceptible Williams 82 (W82) cultivar for high-throughput sequencing. By sequencing the small RNA libraries, a total of 634 known miRNAs were identified, and 252 novel miRNAs were predicted. Altogether, 14 known miRNAs belonging to 13 families, and 26 novel miRNAs were differentially expressed and may respond to SCN infection in HPZ and W82. Similar expression results were also confirmed by qRT-PCR. Further analysis of the biological processes that these potential target genes of differentially expressed miRNAs regulate found that they may be strongly related to plant–pathogen interactions. Overall, soybean miRNAs experience profound changes in early stages of SCN infection in both HPZ and W82. The findings of this study can provide insight into miRNAome changes in both HPZ and W82 at the early stages of infection, and may provide a stepping stone for future SCN management.


2021 ◽  
Author(s):  
Nicolas Bejerman ◽  
Humberto Debat

Tymovirales is an order of viruses with positive-sense, single-stranded RNA genomes that mostly infect plants, but also fungi and insects. The number of tymovirid sequences has been growing in the last few years with the extensive use of high-throughput sequencing platforms. Here we report the discovery of 31 novel tymovirid genomes associated with 27 different host plant species, which were hidden in public databases. These viral sequences were identified through a homology searches in more than 3,000 plant transcriptomes from the NCBI Sequence Read Archive (SRA) using known tymovirids sequences as query. Identification, assembly and curation of raw SRA reads resulted in 29 viral genome sequences with full-length coding regions, and two partial genomes. Highlights of the obtained sequences include viruses with unique and novel genome organizations among known tymovirids. Phylogenetic analysis showed that six of the novel viruses were related to alphaflexiviruses, seventeen to betaflexiviruses, two to deltaflexiviruses and six to tymoviruses. These findings resulted in the most complete phylogeny of tymovirids to date and shed new light on the phylogenetic relationships and evolutionary landscape of this group of viruses. Furthermore, this study illustrates the complexity and diversity of tymovirids genomes and demonstrates that analyzing SRA public data provides an invaluable tool to accelerate virus discovery and refine virus taxonomy.


2018 ◽  
Author(s):  
Karyna Rosario ◽  
Kaitlin A Mettel ◽  
Bayleigh E Benner ◽  
Ryan Johnson ◽  
Catherine Scott ◽  
...  

Viruses encoding a replication-associated protein (Rep) within a covalently closed, single-stranded (ss)DNA genome are among the smallest viruses known to infect eukaryotic organisms, including economically valuable agricultural crops and livestock. Although circular Rep-encoding ssDNA (CRESS DNA) viruses are a widespread group for which our knowledge is rapidly expanding, biased sampling towards vertebrates and land plants has limited our understanding of their diversity and evolution. Here we screened terrestrial arthropods for CRESS DNA viruses and report the identification of 44 viral genomes and replicons associated with specimens representing all three major terrestrial arthropod lineages, namely Euchelicerata (spiders), Hexapoda (insects), and Myriapoda (millipedes). We identified virus genomes belonging to three established CRESS DNA viral families (Circoviridae, Genomoviridae, and Smacoviridae); however, over half of the arthropod-associated virus genomes are only distantly related to currently classified CRESS DNA viral sequences. Although members of viral and satellite families known to infect plants (Geminiviridae, Nanoviridae, Alphasatellitidae) were not identified in this study, these plant-infecting CRESS DNA viruses and replicons are transmitted by hemipterans. Therefore, members from six out of the seven established CRESS DNA viral families circulate among arthropods. Furthermore, a phylogenetic analysis of Reps, including endogenous viral sequences, reported to date from a wide array of organisms revealed that most of the known CRESS DNA viral diversity circulates among invertebrates. Our results highlight the vast and unexplored diversity of CRESS DNA viruses among invertebrates and parallel findings from RNA viral discovery efforts in undersampled taxa.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5761 ◽  
Author(s):  
Karyna Rosario ◽  
Kaitlin A. Mettel ◽  
Bayleigh E. Benner ◽  
Ryan Johnson ◽  
Catherine Scott ◽  
...  

Viruses encoding a replication-associated protein (Rep) within a covalently closed, single-stranded (ss)DNA genome are among the smallest viruses known to infect eukaryotic organisms, including economically valuable agricultural crops and livestock. Although circular Rep-encoding ssDNA (CRESS DNA) viruses are a widespread group for which our knowledge is rapidly expanding, biased sampling toward vertebrates and land plants has limited our understanding of their diversity and evolution. Here, we screened terrestrial arthropods for CRESS DNA viruses and report the identification of 44 viral genomes and replicons associated with specimens representing all three major terrestrial arthropod lineages, namely Euchelicerata (spiders), Hexapoda (insects), and Myriapoda (millipedes). We identified virus genomes belonging to three established CRESS DNA viral families (Circoviridae, Genomoviridae, and Smacoviridae); however, over half of the arthropod-associated viral genomes are only distantly related to currently classified CRESS DNA viral sequences. Although members of viral and satellite families known to infect plants (Geminiviridae, Nanoviridae, Alphasatellitidae) were not identified in this study, these plant-infecting CRESS DNA viruses and replicons are transmitted by hemipterans. Therefore, members from six out of the seven established CRESS DNA viral families circulate among arthropods. Furthermore, a phylogenetic analysis of Reps, including endogenous viral sequences, reported to date from a wide array of organisms revealed that most of the known CRESS DNA viral diversity circulates among invertebrates. Our results highlight the vast and unexplored diversity of CRESS DNA viruses among invertebrates and parallel findings from RNA viral discovery efforts in undersampled taxa.


Sign in / Sign up

Export Citation Format

Share Document