scholarly journals PBMCs are additional sites of productive infection of bovine papillomavirus type 2

2011 ◽  
Vol 92 (8) ◽  
pp. 1787-1794 ◽  
Author(s):  
Sante Roperto ◽  
Stefano Comazzi ◽  
Emilio Ciusani ◽  
Francesca Paolini ◽  
Giuseppe Borzacchiello ◽  
...  

Bovine papillomavirus type 2 (BPV-2) is an oncogenic virus infecting both epithelial and mesenchymal cells. Its life cycle, similar to other papillomaviruses (PVs), appears to be linked to epithelial differentiation. Human and bovine PVs have been known to reside in a latent, episomal form in PBMCs; therefore, it is believed that blood cells, like all mesenchymal cells, function as non-permissive carriers. Here, for the first time in veterinary and comparative medicine, the BPV-2 E5 oncoprotein and the major structural L1 capsid protein, known to be expressed only in productive infections, were shown to occur in defined subsets of PBMCs. E5 oncoprotein was detected in sorted T- and B-cells as well as in monocytes by flow cytometry and Western blot analysis. However, CD4+ and CD8+ lymphocytes appeared to be the main circulating targets of the virus, thus possibly representing the most important reservoir of active BPV-2 in blood. L1 protein was identified by flow cytometry in a population of blood cells recognized as lymphocytes by morphological scatter properties. Western blot analysis was performed on lysates obtained from the sorted subpopulations of PBMCs and detected L1 protein in CD4+ and CD8+ cells only. Thus, this study showed that CD4+ and CD8+ lymphocytes are permissive for BPV-2 and are new, hitherto unknown sites of productive PV infection. In light of these observations, the life cycle of PVs needs to be revisited to gain novel insights into the epidemiology of BPV infection and the pathogenesis of related diseases.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2506-2506
Author(s):  
Elias Drakos ◽  
Athanasios Thomaides ◽  
Jiang Li ◽  
Marina Konopleva ◽  
L. Jeffrey Medeiros ◽  
...  

Abstract p53 is the most frequently mutated tumor suppressor gene in human cancer. However, in Hodgkin lymphoma (HL) p53 is mutated only in a small subset of cases suggesting that modulation of wild-type-p53 (wt-p53) levels in Hodgkin and Reed-Sternberg (HRS) cells may have therapeutic implications in these patients. MDM2 (HDM2 in humans) is a physiologic negative regulator of p53 levels through a well-established auto-regulatory feedback loop. Nutlin-3A is a recently developed small molecule, which antagonizes mdm2 through disruption of p53-MDM2 interaction resulting in p53 stabilization. We hypothesized that nutlin 3A may stabilize p53 in HRS cells carrying wt-p53 gene, thus leading to p53-dependent apoptosis and G1-S cell cycle arrest. We used two novel classical HL cell lines recently established in our Institution, MDA-V and MDA-E, which have been shown to carry wt-p53 gene. As a control, we used a HL cell line L-428 harboring a mutant p53 (mt-p53) gene product (deletion at exon 4). We investigated effects on apoptosis and cell cycle arrest after treatment of cultured HRS cells with nutlin-3A or a 150-fold less active enantiomere, nutlin-3B. Treatment with nutlin-3A resulted in substantial cell death (up to 65%) in a concentration-dependent manner associated with increased apoptosis as shown by apoptotic morphology (DAPI immunofluorescence), annexin V binding (flow cytometry) and caspase activation (Western blot analysis) in MDA-V and MDA-E cells, but not in L-428 cells. Nutlin-3A-induced apoptotic cell death was accompanied by stabilization of p53 protein as detected by western blot analysis and immunofluorescence and up-regulation of pro-apoptotic Bax, a known target of p53. Inhibition of nuclear export by leptomycin B stabilized p53 at a similar level as compared to nutlin-3A treatment in these cells, suggesting that nutlin-3A stabilized p53 through inhibition of MDM2-mediated degradation of the protein. By contrast, no changes in cell viability, growth or apoptosis were seen after treatment with the inactive nutlin-3B small molecule. Treatment with nutlin-3A also resulted in a significant decrease (up to 85%) of cells in S-phase and a dose-dependent increase of cells in G1 phase of cell cycle as detected by flow cytometry, in MDA-V and MDA-E cells, but not in L-428 cells. Cell cycle arrest was associated with up-regulation of the cyclin-dependent kinase inhibitor p21, a transcriptional target of p53. In contrast, treatment of HRS cells with nutlin-3B had no effects on the cell cycle irrespective of p53 mutation status. Furthermore, combined treatment with nutlin-3A and doxorubicin revealed synergistic effects and enhanced cytotoxicity in HRS cells with wt-p53 gene. Targeting MDM2 with the specific antagonist nutlin-3A that leads to non-genotoxic p53 activation, apoptosis induction and cell cycle inhibition may provide a new therapeutic approach for patients with HL.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1769-1769
Author(s):  
Amir Hossein Daneshmanesh ◽  
Mohammad Hojjat-Farsangi ◽  
Asa Sandin ◽  
Abdul Salam Khan ◽  
Ali Moshfegh ◽  
...  

Abstract Abstract 1769 Background: Phosphoinositide 3-kinase (PI3K)/AKT cascade regulates cell survival, proliferation and differentiation in a variety of cells. In CLL cells PI3K pathway is constitutively activated leading to AKT activation and phosphorylation of cAMP response element-binding protein (CREB). CREB is a transcription factor overexpressed and constitutively phosphorylated in a variety of cancers and seems to have a role in tumor pathobiology. There is a great need to develop novel strategies for targeted therapy in CLL. Monoclonal antibodies (mAbs) specifically targeting leukemic cells might be a rewarding approach. ROR1 is a type I transmembrane receptor tyrosine kinase belonging to one of the twenty families of receptor tyrosine kinases (RTKs). ROR1 is overexpressed on CLL cells but not in white blood cells of healthy donors. ROR1 is constitutively phosphorylated in CLL and siRNA transfection induced apoptosis. We have developed a unique anti-ROR1 mAb directed against CRD (cysteine-rich domain) of the extracellular region of ROR1 capable of inducing direct apoptosis of primary CLL cells. Our anti-CRD mAb induced dephosphorylation of the ROR1 molecule. Aims: To study the apoptotic effect of an anti-ROR1 CRD mAb and effects on downstream signaling pathways involved in CLL, specially the PI3-kinase/AKT/CREB pathway using primary CLL cells. Methods: Using a peptide-based mouse mAb generation method we produced several mAbs against the three extracellular domains of ROR1. In the current study we used one of the best anti-ROR1 antibodies, an anti-CRD mAb raised against the CRD region of ROR1 (Daneshmanesh et al., Leukemia. 2012 Jun;26(6):1348-55). Flow cytometry was used for surface staining of ROR1. Primary CLL cells were incubated with the anti-ROR1 CRD mAb and apoptosis was detected by the MTT assay and Annexin V/propidium iodide (flow cytometry) methods in a 24 h assay. Antibody untreated and treated cell lysates were prepared and subjected to Western blot analysis for identification of signaling molecules involved in apoptosis induced by the anti-ROR1 CRD mAb. We analysed total and phosphorylated levels of the following signaling proteins: AKT, p-AKT, PI3K, p-PI3K, CREB, p-CREB, ERK, p-ERK, PKC and p-PKC. Phosphoproteins were measured before incubation with the mAb and after 20 min-2 h. Results: ROR1 surface expression was detected on 80–85% of the CLL cells. The frequency of apoptotic cells induced by the anti-CRD mAb was in the range of 45–50% which is in accordance with our previous reports (see above). Time kinetics experiments using anti-ROR1 CRD mAb incubated with primary CLL cells revealed dephosphorylation of ROR1 downstream signaling molecules. We analysed the following molecules known to be involved in CLL: PKC, PI3-kinase and ERK1/2. After co-culturing CLL cells with the anti-ROR1 CRD mAb, Western blot analysis showed decreased level of phosphorylated AKT in treated compared to untreated samples. No changes in the phosphorylation levels of ERK1/2 and PKC proteins were seen. Furthermore, we analysed the PI3-kinase protein which is upstream of AKT, and noticed that in CLL cells treated with the anti-ROR1 CRD mAb, the phosphorylation intensity of PI3-kinase p85 isoform has decreased but not p55 isoforrn. Moreover, we also studied the CREB phosphorylation in treated and untreated CLL samples and detected dephosphorylation of CREB in treated as compared to untreated samples. Conclusion: Incubation of CLL cells with an anti-ROR1 CRD mAb induced apoptosis of primary CLL cells. Apoptosis was preceded by dephosphorylation within 2 h of PI3-kinase, AKT and CREB proteins indicating deactivation of these signaling proteins by the anti-ROR1 mab. In untreated CLL cells no effect on phosphorylation of these proteins was noted. Furthermore our ROR1 mAb did not dephosphorylate PKC or ERK. Our data may suggest that activation of CREB molecule might occur via the PI3K/AKT pathway and may be a survival signal in CLL cells associated with the aberrant expression of ROR1. The constitutive phosphorylation of PKC and ERK1/2 seen in CLL might not be related to the overexpression of ROR1. Further studies are warranted for a better understanding of signaling pathways associated with ROR1 and the downstream signaling effects of ROR1 targeting drugs. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Jieke Cui ◽  
Rong Guo ◽  
Yingjun Wang ◽  
Yue Song ◽  
Xuewen Song ◽  
...  

Abstract Background: Diffuse large B-cell lymphoma (DLBCL) is one of the most common causes of cancer death worldwide, and responds badly to the existing treatment. Thus, identifying the novel therapeutic targets of DLBCL are urgent. Methods and results: In this study, we found that the T-lymphokine-activated killer cell-originated protein kinase (TOPK) was highly expressed in DLBCL cells and tissues. The TOPK expression were analyzed by bioinformatics analysis, immunohistochemistry (IHC) and western blot analysis. TOPK knockdown inhibited cell growth and induced apoptosis of DLBCL cells with MTS and flow cytometry. Further experiments demonstrated that acetylshikonin, the targeted compound of TOPK, could attenuate the cell growth and aggravate the cell apoptosis through TOPK/extra cellular signal-regulated kinase (ERK)-1/2 signaling using MTS, flow cytometry and western blot analysis. In addition, we demonstrated that TOPK overexpression significantly reduced the acetylshikonin effect on cell proliferation and apoptosis in U2932 and OCI-LY8 cells using MTS, flow cytometry and western blot analysis. Conclusions: Taken together, the present study suggests that the targeted inhibition of TOPK by acetylshikonin may be a promising approach to the treatment of DLBCL.


Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1293
Author(s):  
Wiebke Jürgens-Wemheuer ◽  
Arne Wrede ◽  
Walter Schulz-Schaeffer

Fatal familial insomnia (FFI) belongs to the genetic human transmissible spongiform encephalopathies (TSE), such as genetic Creutzfeldt-Jakob disease (CJD) or Gerstmann-Straeussler-Scheinker syndrome (GSS). Here, we analyzed the properties of the pathological prion protein in six FFI cases by Western blot analysis, a protein aggregate stability assay, and aggregate deposition characteristics visualized with the paraffin-embedded tissue blot. While in all cases the unglycosylated fragment in Western blot analysis shared the same size with sporadic CJD prion type 2, the reticular/synaptic deposition pattern of the prion aggregates resembled the ones found in sporadic CJD type 1 (CJD types according to the Parchi classification from 1999). Regarding the conformational stability against denaturation with GdnHCl, FFI prion aggregates resembled CJD type 1 more than type 2. Our results suggest that the size of the proteinase-K-resistant fragments is not a valid criterion on its own. Additional criteria supplying information about conformational differences or similarities need to be taken into account. FFI may resemble a prion type with its own conformation sharing properties partly with type 1 and type 2 prions.


2015 ◽  
Vol 10 (2) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Dan Xia

The effect and mechanism of ovarian cancer HO-8910 cell apoptosis induced by crocin. MTT assay was performed to detect the inhibitory action of crocin on the proliferation of HO-8910 cells. Flow cytometry was used to test the cell cycle distribution and apoptosis rate of ovarian cancer HO-8910 cells. Western blot analysis was utilized to measure the levels of apoptotic proteins such as p53, Fas/APO-1, and Caspase-3. MTT analysis revealed that crocin significantly inhibited the growth of HO-8910 cells. Additionally, flow cytometry illustrated that crocin raised the proportion of HO-8910 cells in the G0/G1 phase and increased their apoptosis rate. Furthermore, Western blot analysis revealed that crocin up-regulated the expression of p53, Fas/APO-1, and Caspase-3. The results of this study showed that crocin can significantly inhibit the growth of HO-8910 cells and arrest them in the G0/G1 phase. Crocin can also promote ovarian cancer HO-8910 cell apoptosis, most likely by increasing p53 and Fas/APO-1 expression, and then activating the apoptotic pathway regulated by Caspase-3.


1994 ◽  
Vol 266 (4) ◽  
pp. F554-F562 ◽  
Author(s):  
T. G. Hammond ◽  
P. J. Verroust

The endosomal pathway of the rat renal cortex was labeled by intravenous infusion of fluorescent dextran small enough to cross the glomerular ultrafiltration barrier and be taken up by luminal endocytosis in the proximal tubule. Clathrin-coated vesicles (CCV) were isolated from the rat renal cortex utilizing discontinuous sucrose density gradients and negative lectin selection. More than 99 +/- 1% (n = 4) of the isolated vesicles contain entrapped fluorescein dextran when analyzed by small-particle flow cytometry techniques. Similarly, flow cytometry analysis demonstrates brisk H(+)-adenosinetriphosphatase activity in virtually all the vesicles. Western blot analysis of the vesicle proteins with a polyclonal anticlathrin antibody stains bands consistent with clathrin and adaptins. When the isolated vesicles are decoated by exposure to 0.5 M tris(hydroxymethyl)aminomethane, the proteins released match the molecular weights of the proteins identified on Western blot analysis. Flow cytometry demonstration of brush border enzymes in > 99% of the vesicles and Western blot identification of maltase suggests both that these vesicles are of apical origin and that apical enzymes traffic into endosomal elements. Additionally, two glycoproteins detectable in this fraction on Western blot analysis and flow cytometry immunocytochemistry are derived from intermicrovillar clefts traffic into the endosomal pathway. Hence, apical proteins traffic into a population of CCV isolated from the rat renal cortex.


2019 ◽  
Vol 51 (7) ◽  
pp. 734-742 ◽  
Author(s):  
Eun-Ae Kim ◽  
Eon-Gi Sung ◽  
In-Hwan Song ◽  
Joo-Young Kim ◽  
Hwa-Jung Sung ◽  
...  

Abstract Neferine is an alkaloid extracted from a seed embryo of Nelumbo nucifera and has recently been shown to have anticancer effects in various human cancer cell lines. However, the detailed molecular mechanism of neferine-induced apoptosis has not been elucidated in renal cancer cells. In the present study, we observed that neferine induced inhibition of cell proliferation and apoptosis in Caki-1 cells in a dose-dependent manner by using MT assay and flow cytometry and that neferine-mediated apoptosis was attenuated by pretreatment with N-benzyloxycarbony-Val-Ala-Asp (O-methyl)-fluoromethyketone, a pan-caspase inhibitor. Treatments with neferine dose-dependently downregulated B cell lymphoma-2 (Bcl-2) expression at the transcriptional level determined by reverse transcriptase-polymerase chain reaction. The forced expression of Bcl-2 and p65 attenuated the neferine-mediated apoptosis in Caki-1 cells. In addition, neferine induced apoptosis by downregulating Bcl-2 and p65 expression in the other two kidney cancer cell lines determined by flow cytometry and western blot analysis. Finally, we observed that treatment with neferine induced apoptosis by inhibiting the NF-κB pathway through caspase-mediated cleavage of the p65 protein by western blot analysis. Collectively, this study demonstrated that neferine-induced apoptosis is mediated by the downregulation of Bcl-2 expression via repression of the NF-κB pathway in renal cancer cells.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Jie-Mei Wang ◽  
Jun Tao ◽  
Alex F Chen

Endothelial progenitor cells (EPCs) play a key role in angiogenesis, which is dysfunctional in diabetes. MicroRNAs (miRNAs) are endogenous non-coding RNAs that regulate gene expression at the post-transcriptional level. However, whether miRNAs regulate EPC-mediated angiogenesis in diabetes is unknown. We tested the hypothesis that mir-27b rescues impaired EPC angiogenesis in vitro and in vivo via suppressing anti-angiogenic molecule thrombospondin-1 (TSP-1) in type 2 diabetes. Bone marrow-derived EPCs from adult male (C57BLKS/J, 9 weeks) type 2 diabetic db/db and their normal littermates db/+ mice (glucose 371.8±37.8 vs. 167.5±21.3 mg/dL, n=38, p<0.05) were used. miRNA processing enzyme Dicer in EPCs was decreased by >40% in db/db vs. db/+ mice (Western blot analysis, n=4 p<0.01), paralleled with >66% reduction of mir-27b expression (real-time PCR, n=4, p<0.05). Both TSP-1 mRNA and protein in EPCs were significantly higher in db/db vs. db/+ mice (real-time PCR, 130.1%, n=4, p<0.05, Western blot analysis, 127.4%, n=4 p<0.05), which were suppressed upon mir-27b mimic transfection (by 75%, real-time PCR and 69%, Western blot analysis, n=4 – 6, p<0.01). EPC-induced angiogenesis was decreased by >70% in db/db vs. db/+ mice (Matrigel tube formation assay, n=4, p<0.05), which was rescued upon mir-27b mimic transfection or silencing TSP-1 expression by its siRNA (both n=4, p<0.05). Furthermore, inhibition of mir-27b in normal EPCs increased their TSP-1 protein by 117.5% (n=6, p<0.05) and impaired their angiogenesis by 81.5% (n=4, p<0.01), both were reversed by silencing TSP-1 expression by its siRNA. Finally, excisional wound closure was markedly delayed in db/db vs. db/+ mice (4-mm punch biopsy, n=4, p<0.05), accompanied by impaired wound angiogenesis (perfusion index by Laser Doppler, n=4, p<0.05). Cell therapy of diabetic EPCs (3×10 5 cells) transfected with mir-27b mimic onto diabetic wounds significantly accelerated their closure rates (n=4, p<0.05 vs. diabetic EPCs alone), with a concomitant augmentation of in vivo wound angiogenesis (n=4, p<0.05). Mir-27b rescues impaired EPC angiogenesis and accelerates wound healing in type 2 diabetic mice, at least in part, via suppressing TSP-1 expression. This research has received full or partial funding support from the American Heart Association, AHA Midwest Affiliate (Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, South Dakota & Wisconsin).


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4231-4231
Author(s):  
Carla Di Stefano ◽  
Marco Tafani ◽  
Bruna Pucci ◽  
Elisabetta Abruzzese ◽  
Margherita Trawiska ◽  
...  

Abstract Introduction: Molecular chaperones have many functions, such as protecting other proteins against aggregation, assisting in folding of nascent proteins/refolding of damaged proteins and targeting severely damaged proteins to degradation. As one of the molecular chaperones, Hsp90 functions to facilitate the folding of newly synthesized and denatured client proteins, including mutated p53, Bcr-Abl, p185ErbB2 and Raf-1. The Bcr-Abl fusion gene encodes for the p210Bcr-Abl tyrosine kinase (TK) implicated in the pathogenesis of chronic myelogenous leukemia (CML). Studies in cultured cells have identified many signal transduction pathways activated by Bcr-Abl, including activation of the Ras, MAPK, JNK/SAPK, phosphatidylinositol-3 kinase, nuclear factor-B and STAT pathways. Imatinib mesylate (imatinib IM) is a tyrosine kinase inhibitor that competitively inhibits ATP binding in the kinase domains of both the Bcr-Abl and c-Abl kinases. It has been suggested that resistance to imatinib stems from Bcr-Abl gene amplification, leading to overexpression of Bcr-Abl protein or point mutations in the Bcr-Abl gene However, several groups suggested that there might be other forms of Bcr-Abl-independent imatinib resistance Recently, it has been reported that changes in histone deacetylase (HDAC) expression in leukemic cells could be involved in mechanisms for abnormal cellular proliferation that operate through chromatin-independent pathways and thereby could lead to acquired drug resistance of the cells In the present study, we evaluated in primary leukemic blasts, obtained from chronic myelogenous leukemia patients at onset, patients in blast crisis and patients which were imatinib-resistant The espression the sirtuin members family and HSP70, HSP90 i-NOS and bcl-2 was evaluated by Nortern blot and Western blot analysis. Material and Methods: Primary leukaemia blasts We harvested primary blast rich mononuclear cells were obtained by gradient centrifugation on ficoll-hypaque of bone marrow and peripheral blood cells after obtaining appropriate informed consent. Northern blot Total RNAs from control or treated cells were isolated using Tri Reagent Aliquots of RNA were electrophoresed and blotted onto nylon membranes, that hybridized to 32P-labelled probe. Western Blot Cells were lysed and. then were centrifugated. Protein concentration was determined by the Bradford assay.. Equivalent amounts of protein loaded and electrophoresed and were transferred to nitrocellulose membranes, that were incubated with the different primary antibodies:, Result and Discussion:. In the present study, we evaluated a pattern of different gene expression by Northern Blot and Western Blot analysis in bone marrow and peripheral blood cells from 16 CML patients at onset, from 2 patients in blast crisis evolved under IM treatment, and 14 imatinib-resistant patients. Some RNAs were underexpressed in most or all samples tested and never overexpressed (eg SIRT2, SIRT3, SIRT4 and SIRT5), while others were overexpressed in the great majority of samples and rarely, if ever, underexpressed (eg SIRT1, SIRT7, HSP90, iNOS)Furthermore, we examined the level of heat-shock related proteins HSP90 and bcl-2 in 2 patients during treatment with IM. and one patient IM-resistant by western Blot analysis: HSP90 and BCl-2 increased one patient during treatment with IM, while both protein levels was very high in one one patient IM-resistant These results suggest that the difference of genes expression might contribute to patterns of clinical response.


2019 ◽  
Vol 476 (2) ◽  
pp. 261-274 ◽  
Author(s):  
Wenduo Qi ◽  
Brad A. Davidson ◽  
Matthew Nguyen ◽  
Taylor Lindstrom ◽  
Richard J. Grey ◽  
...  

Abstract Gaucher disease (GD) is a rare lysosomal storage disorder caused by mutations in the GBA1 gene, encoding the lysosome-resident glucocerebrosidase enzyme involved in the hydrolysis of glucosylceramide. The discovery of an association between mutations in GBA1 and the development of synucleinopathies, including Parkinson disease, has directed attention to glucocerebrosidase as a potential therapeutic target for different synucleinopathies. These findings initiated an exponential growth in research and publications regarding the glucocerebrosidase enzyme. The use of various commercial and custom-made glucocerebrosidase antibodies has been reported, but standardized in-depth validation is still not available for many of these antibodies. This work details the evaluation of several previously reported glucocerebrosidase antibodies for western blot analysis, tested on protein lysates of murine gba+/+ and gba−/− immortalized neurons and primary human wild-type and type 2 GD fibroblasts.


Sign in / Sign up

Export Citation Format

Share Document