Neferine-induced apoptosis is dependent on the suppression of Bcl-2 expression via downregulation of p65 in renal cancer cells

2019 ◽  
Vol 51 (7) ◽  
pp. 734-742 ◽  
Author(s):  
Eun-Ae Kim ◽  
Eon-Gi Sung ◽  
In-Hwan Song ◽  
Joo-Young Kim ◽  
Hwa-Jung Sung ◽  
...  

Abstract Neferine is an alkaloid extracted from a seed embryo of Nelumbo nucifera and has recently been shown to have anticancer effects in various human cancer cell lines. However, the detailed molecular mechanism of neferine-induced apoptosis has not been elucidated in renal cancer cells. In the present study, we observed that neferine induced inhibition of cell proliferation and apoptosis in Caki-1 cells in a dose-dependent manner by using MT assay and flow cytometry and that neferine-mediated apoptosis was attenuated by pretreatment with N-benzyloxycarbony-Val-Ala-Asp (O-methyl)-fluoromethyketone, a pan-caspase inhibitor. Treatments with neferine dose-dependently downregulated B cell lymphoma-2 (Bcl-2) expression at the transcriptional level determined by reverse transcriptase-polymerase chain reaction. The forced expression of Bcl-2 and p65 attenuated the neferine-mediated apoptosis in Caki-1 cells. In addition, neferine induced apoptosis by downregulating Bcl-2 and p65 expression in the other two kidney cancer cell lines determined by flow cytometry and western blot analysis. Finally, we observed that treatment with neferine induced apoptosis by inhibiting the NF-κB pathway through caspase-mediated cleavage of the p65 protein by western blot analysis. Collectively, this study demonstrated that neferine-induced apoptosis is mediated by the downregulation of Bcl-2 expression via repression of the NF-κB pathway in renal cancer cells.

2020 ◽  
Vol 20 (23) ◽  
pp. 2070-2079
Author(s):  
Srimadhavi Ravi ◽  
Sugata Barui ◽  
Sivapriya Kirubakaran ◽  
Parul Duhan ◽  
Kaushik Bhowmik

Background: The importance of inhibiting the kinases of the DDR pathway for radiosensitizing cancer cells is well established. Cancer cells exploit these kinases for their survival, which leads to the development of resistance towards DNA damaging therapeutics. Objective: In this article, the focus is on targeting the key mediator of the DDR pathway, the ATM kinase. A new set of quinoline-3-carboxamides, as potential inhibitors of ATM, is reported. Methods: Quinoline-3-carboxamide derivatives were synthesized and cytotoxicity assay was performed to analyze the effect of molecules on different cancer cell lines like HCT116, MDA-MB-468, and MDA-MB-231. Results: Three of the synthesized compounds showed promising cytotoxicity towards a selected set of cancer cell lines. Western Blot analysis was also performed by pre-treating the cells with quercetin, a known ATM upregulator, by causing DNA double-strand breaks. SAR studies suggested the importance of the electron-donating nature of the R group for the molecule to be toxic. Finally, Western-Blot analysis confirmed the down-regulation of ATM in the cells. Additionally, the PTEN negative cell line, MDA-MB-468, was more sensitive towards the compounds in comparison with the PTEN positive cell line, MDA-MB-231. Cytotoxicity studies against 293T cells showed that the compounds were at least three times less toxic when compared with HCT116. Conclusion: In conclusion, these experiments will lay the groundwork for the evolution of potent and selective ATM inhibitors for the radio- and chemo-sensitization of cancer cells.


2003 ◽  
Vol 21 (9) ◽  
pp. 1708-1714 ◽  
Author(s):  
Matthias P.A. Ebert ◽  
Jun Yu ◽  
Juliane Hoffmann ◽  
Alba Rocco ◽  
Christoph Röcken ◽  
...  

Purpose: Beta-catenin (β-catenin) participates in intercellular adhesion and is an integral part of the Wnt signaling pathway. The role of β-catenin in the pathogenesis of gastric cancer and its metastasis is largely unknown. Patients and Methods: Immunohistochemistry and Western blot analysis were used to analyze the expression of β-catenin in 87 human gastric cancers, in metastasis and cancer cell lines. The β-catenin and the adenomatous polyposis coli (APC) genes were analyzed for gene mutations. Furthermore, methylation of the β-catenin promoter in cell lines was assessed by treatment with 5′-azadeoxycytidine and sodium bisulfite genomic sequencing. Results: β-Catenin expression was present at either the cell membrane or the cytoplasm in 34 of 75 primary gastric cancers. Expression of β-catenin was significantly more frequent in intestinal-type (P = .0049) and well-differentiated gastric cancers (P < .001). There were no quantitative differences between gastric cancers and the nonmalignant gastric tissues, as determined by Western blot analysis. One of 18 metastatic cancer lesions and four of five gastric cancer cell lines expressed β-catenin protein. N87 cells, derived from the liver metastasis of a gastric cancer, did not express β-catenin. Treatment with 5′-azadeoxycytidine restored β-catenin protein levels in this cell line, which exhibited significantly more 5-methylcytosines in the β-catenin promoter compared with the other cell lines. Conclusion: β-Catenin expression is lost in a subgroup of primary gastric cancers, is frequently absent in metastases, and exhibits nuclear localization in cancers with either β-catenin or APC gene mutations. Interestingly, the loss of β-catenin expression in metastatic gastric cancers may result from hypermethylation of the β-catenin promoter.


2019 ◽  
Vol 9 (5) ◽  
pp. 673-678
Author(s):  
Hua Ye ◽  
Hui Luo ◽  
Yun Tu ◽  
Liao Cui

Colorectal cancer (CRC) is one of the common malignant tumors of digestive system, which the incidence of CRC has been on the rise in recent years. Omentin-1 is reported to be increased in plasma of CRC patients. The present study aimed to investigate whether Omentin-1 could promote the proliferation, invasion, migration and angiogenesis of colorectal cancer cells. ELISA assay and western blot analysis detected the Omentin-1 level in plasma of CRC patients and western blot analysis and RT-qPCR analysis detected the Omentin-1 level in colorectal cancer cell lines. The transfection effects were verified by western blot analysis. The cell proliferation, invasion and migration were determined by CCK-8 assay, wound healing assay and transwell assay. The expression of MMP2, MMP9, VEGF and AngII was analyzed by western blot analysis. The results showed that Omentin-1 was increased in plasma of CRC patients and colorectal cancer cell lines. Omentin-1 overexpression promoted the proliferation, invasion, migration and angiogenesis of colorectal cancer cells. And, up-regulation of Omentin-1 increased the expression of MMP2, MMP9, VEGF and AngII. In conclusion, our data suggested that Omentin-1 promoted the proliferation, invasion, migration and angiogenesis of colorectal cancer cells.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 15030-15030
Author(s):  
W. Glienke ◽  
L. Maute ◽  
E. Milz ◽  
N. Bauer ◽  
L. Bergmann

15030 The anti-apoptotic gene survivin/BIRC5 plays an important role in cellular proliferation and survival of cancer cells. Regulated by constitutively activated STAT3, Survivin/BIRC5 may be a target for inhibiting cellular proliferation in pancreatic cancer cell lines. The purpose of this study was (a) to determine the effect of curcumin (diferuloylmethane) on survivin/BIRC5 expression and (b) a possible role of STAT3 activation in Survivin/BIRC5 expression in pancreatic cancer cell lines. We have incubated four pancreatic cancer cell lines with different amounts of curcumin. The expression of Survivin/BIRC5 on mRNA and protein level was measured with RT-PCR and western blot analysis. The activation of STAT3 through phosphorylation, contributing to the regulation of survivin was analyzed with western blot analysis. The incubation of the pancreatic cancer cell lines with curcumin resulted in a down-regulation of cellular proliferation in all cell lines tested but with different rates of inhibition. The expression of survivin/BIRC5 on mRNA and protein level was significantly down-regulated after treatment with 30 μM. Curcumin blocked the phosphorylation of STAT3 in a concentration-dependent manner. Treatment of pancreatic cancer cell lines with curcumin resulted in an induction of apoptosis as measured with FacScan analysis. We conclude that curcumin inhibits several key factors in cancer cellular pathways and may have the potential to be investigated in pancreatic cancer. No significant financial relationships to disclose.


2004 ◽  
Vol 64 (5) ◽  
pp. 1607-1610 ◽  
Author(s):  
Manli Shen ◽  
Yongdong Feng ◽  
Chun Gao ◽  
Deding Tao ◽  
Junbo Hu ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0246197
Author(s):  
Jorge Marquez ◽  
Jianping Dong ◽  
Chun Dong ◽  
Changsheng Tian ◽  
Ginette Serrero

Antibody-drug conjugates (ADC) are effective antibody-based therapeutics for hematopoietic and lymphoid tumors. However, there is need to identify new targets for ADCs, particularly for solid tumors and cancers with unmet needs. From a hybridoma library developed against cancer cells, we selected the mouse monoclonal antibody 33B7, which was able to bind to, and internalize, cancer cell lines. This antibody was used for identification of the target by immunoprecipitation and mass spectrometric analysis, followed by target validation. After target validation, 33B7 binding and target positivity were tested by flow cytometry and western blot analysis in several cancer cell lines. The ability of 33B7 conjugated to saporin to inhibit in vitro proliferation of PTFRN positive cell lines was investigated, as well as the 33B7 ADC in vivo effect on tumor growth in athymic mice. All flow cytometry and in vitro internalization assays were analyzed for statistical significance using a Welsh’s T-test. Animal studies were analyzed using Two-Way Analysis of Variance (ANOVA) utilizing post-hoc Bonferroni analysis, and/or Mixed Effects analysis. The 33B7 cell surface target was identified as Prostaglandin F2 Receptor Negative Regulator (PTGFRN), a transmembrane protein in the Tetraspanin family. This target was confirmed by showing that PTGFRN-expressing cells bound and internalized 33B7, compared to PTGFRN negative cells. Cells able to bind 33B7 were PTGFRN-positive by Western blot analysis. In vitro treatment PTGFRN-positive cancer cell lines with the 33B7-saporin ADC inhibited their proliferation in a dose-dependent fashion. 33B7 conjugated to saporin was also able to block tumor growth in vivo in mouse xenografts when compared to a control ADC. These findings show that screening antibody libraries for internalizing antibodies in cancer cell lines is a good approach to identify new cancer targets for ADC development. These results suggest PTGFRN is a possible therapeutic target via antibody-based approach for certain cancers.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Michel-Gael F. Guefack ◽  
Francois Damen ◽  
Armelle T. Mbaveng ◽  
Simplice Beaudelaire Tankeo ◽  
Gabin T. M. Bitchagno ◽  
...  

The global cancer burden remains a serious concern with the alarming incidence of one in eight men and one in eleven women dying in developing countries. This situation is aggravated by the multidrug resistance (MDR) of cancer cells that hampers chemotherapy. In this study, the cytotoxicity of the methanol extract (HRB), fractions (HRBa, HRBb, and HRBa1-5), and compounds from the bark of Hypericum roeperianum (HRB) was evaluated towards a panel of 9 cancer cell lines. The mode of action of the HRB and trichadonic acid (1) was also studied. Column chromatography was applied to isolate the constituents of HRB. The cytotoxicity of botanicals and phytochemicals was evaluated by the resazurin reduction assay (RRA). Caspase-Glo assay was used to evaluate the activity of caspases, and reactive oxygen species (ROS) (H2DCFH-DA) were assessed by flow cytometry. Phytochemicals isolated from HRB were trichadonic acid (1), fridelan-3-one (2), 2-hydroxy-5-methoxyxanthone (3), norathyriol (4), 1,3,5,6-tetrahydroxyxanthone (5), betulinic acid (6), 3′-hydroxymethyl-2′-(4″-hydroxy-3″,5″-dimethoxyphenyl)-5′,6′:5,6-(6,8-dihydroxyxanthone)-1′,4′-dioxane (7), and 3′-hydroxymethyl-2′-(4″-hydroxy-3″,5″-dimethoxyphenyl)-5′,6′:5,6-(xanthone)-1′,4′-dioxane (8). Botanicals HRB, HRBa, HRBa2-4, HRBb, and doxorubicin displayed cytotoxic effects towards the 9 tested cancer cell lines. The recorded IC50 values ranged from 11.43 µg/mL (against the P-glycoprotein (gp)-overexpressing CEM/ADR5000 leukemia cells) to 26.75 µg/mL (against HCT116 (p53+/+) colon adenocarcinoma cells) for the crude extract HRB. Compounds 1, 5, and doxorubicin displayed cytotoxic effects towards the 9 tested cancer cell lines with IC50 values varying from 14.44 µM (against CCRF-CEM leukemia cells) to 44.20 µM (against the resistant HCT116 (p53−/−) cells) for 1 and from 38.46 µM (against CEM/ADR5000 cells) to 112.27 µM (against the resistant HCT116 (p53−/−) cells) for 5. HRB and compound 1 induced apoptosis in CCRF-CEM cells. The apoptotic process was mediated by enhanced ROS production for HRB or via caspases activation and enhanced ROS production for compound 1. This study demonstrated that Hypericum roeperianum is a potential source of cytotoxic phytochemicals such as trichadonic acid and could be further exploited in cancer chemotherapy.


2018 ◽  
Vol 49 (6) ◽  
pp. 2151-2162 ◽  
Author(s):  
Bo Lian ◽  
Dongxiang Yang ◽  
Yanlong Liu ◽  
Gang Shi ◽  
Jibin Li ◽  
...  

Background/Aims: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an ideal anti-tumor drug because it exhibits selective cytotoxicity against cancer cells. However, certain cancer cells are resistant to TRAIL, and the potential mechanisms are still unclear. The aim of this study was to reduce the resistance of colorectal cancer (CRC) cells to TRAIL. Methods: Quantitative real-time PCR analysis was performed to detect the expression of microRNA-128 (miR-128) in tissues from patients with CRC and CRC cell lines. MTT assays were used to evaluate the effect of miR-128 on TRAIL-induced cytotoxicity against CRC cell lines. The distribution of death receptor 5 (DR5) and the production of reactive oxygen species (ROS) were detected by flow cytometry analysis. Western blot, flow cytometry, and luciferase reporter assays were performed to evaluate the potential mechanism and pathway of miR-128-promoted apoptosis in TRAIL-treated CRC cells. Results: MiR-128 expression was downregulated in tumor tissues from patients with CRC as well as in CRC cell lines in vitro. The enforced expression of miR-128 sensitized CRC cells to TRAIL-induced cytotoxicity by inducing apoptosis. Mechanistically, bioinformatics, western blot analysis, and luciferase reporter assays showed that miR-128 directly targeted sirtuin 1 (SIRT1) in CRC cells. miR-128 overexpression suppressed SIRT1 expression, which promoted the production of ROS in TRAIL-treated CRC cells. This increase of ROS subsequently induced DR5 expression, and thus increased TRAIL-induced apoptosis in CRC cells. Conclusion: The combination of miR-128 with TRAIL may represent a novel approach for the treatment of CRC.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1769-1769
Author(s):  
Amir Hossein Daneshmanesh ◽  
Mohammad Hojjat-Farsangi ◽  
Asa Sandin ◽  
Abdul Salam Khan ◽  
Ali Moshfegh ◽  
...  

Abstract Abstract 1769 Background: Phosphoinositide 3-kinase (PI3K)/AKT cascade regulates cell survival, proliferation and differentiation in a variety of cells. In CLL cells PI3K pathway is constitutively activated leading to AKT activation and phosphorylation of cAMP response element-binding protein (CREB). CREB is a transcription factor overexpressed and constitutively phosphorylated in a variety of cancers and seems to have a role in tumor pathobiology. There is a great need to develop novel strategies for targeted therapy in CLL. Monoclonal antibodies (mAbs) specifically targeting leukemic cells might be a rewarding approach. ROR1 is a type I transmembrane receptor tyrosine kinase belonging to one of the twenty families of receptor tyrosine kinases (RTKs). ROR1 is overexpressed on CLL cells but not in white blood cells of healthy donors. ROR1 is constitutively phosphorylated in CLL and siRNA transfection induced apoptosis. We have developed a unique anti-ROR1 mAb directed against CRD (cysteine-rich domain) of the extracellular region of ROR1 capable of inducing direct apoptosis of primary CLL cells. Our anti-CRD mAb induced dephosphorylation of the ROR1 molecule. Aims: To study the apoptotic effect of an anti-ROR1 CRD mAb and effects on downstream signaling pathways involved in CLL, specially the PI3-kinase/AKT/CREB pathway using primary CLL cells. Methods: Using a peptide-based mouse mAb generation method we produced several mAbs against the three extracellular domains of ROR1. In the current study we used one of the best anti-ROR1 antibodies, an anti-CRD mAb raised against the CRD region of ROR1 (Daneshmanesh et al., Leukemia. 2012 Jun;26(6):1348-55). Flow cytometry was used for surface staining of ROR1. Primary CLL cells were incubated with the anti-ROR1 CRD mAb and apoptosis was detected by the MTT assay and Annexin V/propidium iodide (flow cytometry) methods in a 24 h assay. Antibody untreated and treated cell lysates were prepared and subjected to Western blot analysis for identification of signaling molecules involved in apoptosis induced by the anti-ROR1 CRD mAb. We analysed total and phosphorylated levels of the following signaling proteins: AKT, p-AKT, PI3K, p-PI3K, CREB, p-CREB, ERK, p-ERK, PKC and p-PKC. Phosphoproteins were measured before incubation with the mAb and after 20 min-2 h. Results: ROR1 surface expression was detected on 80–85% of the CLL cells. The frequency of apoptotic cells induced by the anti-CRD mAb was in the range of 45–50% which is in accordance with our previous reports (see above). Time kinetics experiments using anti-ROR1 CRD mAb incubated with primary CLL cells revealed dephosphorylation of ROR1 downstream signaling molecules. We analysed the following molecules known to be involved in CLL: PKC, PI3-kinase and ERK1/2. After co-culturing CLL cells with the anti-ROR1 CRD mAb, Western blot analysis showed decreased level of phosphorylated AKT in treated compared to untreated samples. No changes in the phosphorylation levels of ERK1/2 and PKC proteins were seen. Furthermore, we analysed the PI3-kinase protein which is upstream of AKT, and noticed that in CLL cells treated with the anti-ROR1 CRD mAb, the phosphorylation intensity of PI3-kinase p85 isoform has decreased but not p55 isoforrn. Moreover, we also studied the CREB phosphorylation in treated and untreated CLL samples and detected dephosphorylation of CREB in treated as compared to untreated samples. Conclusion: Incubation of CLL cells with an anti-ROR1 CRD mAb induced apoptosis of primary CLL cells. Apoptosis was preceded by dephosphorylation within 2 h of PI3-kinase, AKT and CREB proteins indicating deactivation of these signaling proteins by the anti-ROR1 mab. In untreated CLL cells no effect on phosphorylation of these proteins was noted. Furthermore our ROR1 mAb did not dephosphorylate PKC or ERK. Our data may suggest that activation of CREB molecule might occur via the PI3K/AKT pathway and may be a survival signal in CLL cells associated with the aberrant expression of ROR1. The constitutive phosphorylation of PKC and ERK1/2 seen in CLL might not be related to the overexpression of ROR1. Further studies are warranted for a better understanding of signaling pathways associated with ROR1 and the downstream signaling effects of ROR1 targeting drugs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3614-3614 ◽  
Author(s):  
Shin Young Hyun ◽  
Young Kyung Kim ◽  
Ji Eun Jang ◽  
Yundeok Kim ◽  
Yu Ri Kim ◽  
...  

Abstract Background: Na/H exchanger 1 (NHE1), an important participant in the precise regulation system of intracellular pH (pHi), is known to be involved in pathological processes such as cell transformation, maintenance and active progression of the neoplastic process. Some studies have showed that leukemic cells showed higher pHi than normal cells, and NHE1 inhibitor could induce acidification and apoptosis of the leukemic cells. In this study, we tried to elucidate the role of NHE1 in leukemic cells according to cytarabine (AraC) resistance. Materials and Methods: Two human AML cell lines, AraC sensitive (AS)-OCI-AML2 cells and AraC resistant (AR)-OCI-AML2 cells, primary leukemic cells from AML patients, and normal bone marrow mononuclear cells (BMMNC) from healthy donor were analyzed. The pH-sensitive fluorescent dye, 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) was used to measure pHi and NHE1 activity. The fluorescent ratio of the 490/440 nm was calibrated intracellularly. The expression of NHE1 was measured by qRT-PCR and western blot analysis. To inhibit the NHE1, the amiloride analogue, 5-(N,N-hexamethylene) amiloride (HMA) (10 µM, 20 µM, 30 µM) was used. Results: To confirmed AraC sensitivity, cell lines were treated with 10 µM AraC for 24 hours, and apoptosis fraction in AS-OCI-AML2 cells and AR-OCI-AML2 cells were 53.1±7.2 % and 4.0±0.8 %, respectively. The pHi of AR-OCI-AML2 cells was significantly higher than AS-OCI-AML2 cells (7.839±0.033 vs. 7.589±0.129, P=0.045) and BMMNC (7.839±0.033 vs. 7.578±0.035, P=0.083), and these differences were associated with higher NHE1 activity. Compared AS-OCI-AML2 cells, AR-OCI-AML2 cells showed significantly higher NHE1 expression by western blot analysis (Figure 1), and NHE1 mRNA levels (0.039±0.014 vs. 1.565±0.070, P<.001) by qRT-PCR. Treatment with HMA (20 µM) could induce apoptosis both on AS-OCI-AML2 cells (26.9±2.8%) and AR-OCI-AML2 cells (37.4±18.8%). Interestingly, induction of apoptosis by HMA was dose-dependent both in AS-OCI-AML2 cells and AR-OCI-AML2 cells, and higher concentration of HMA (30 µM) could induce apoptosis on most of AR-OCI-AML2 cells (68.7±20.2%). Co-treatment experiment with 10 µM AraC and 20 µM HMA in AS-OCI-AML2 cells showed additive effect on inducing apoptosis (AraC vs. HMA vs. HMA+AraC = 53.1±12.4 vs. 53.1±12.4 vs. 67.20±4.3%, Figure 2), but in AR-OCI-AML2 cells, co-treatment did not show additional or synergistic effect on inducing apoptosis (AraC vs. HMA vs. HMA+AraC = 4.0±0.1 vs. 27.1±2.2 vs. 28.1±2.0%, Figure 2). As in the cell lines, primary leukemia cells from patients with AraC resistance showing higher pHi and NHE activity than those from patients without. HMA could induce apoptosis on primary cell lines regardless AraC sensitivity. Conclusions: In this study, we first showed that NHE1 inhibition could induce apoptosis in leukemia cells regardless AraC sensitivity. Apoptotic activity was related with higher pHi and NHE activity in AraC resistant cell lines and primary leukemic cells. NHE inhibition induced apoptosis may be independent with AraC induced apoptosis. The heterogeneity in pHi and NHE activity within leukemic cells may be related to alteration in drug delivery machinery or dormant status of leukemia cells. Further experimental and clinical studies are needed to elucidate the therapeutic application of NHE1 inhibitor to AraC resistant AML. Figure 1. Western blot analysis showed higher level of expression of Na/H exchanger I in AR-AML-OCI2 cells than AS-AML-OCI2 cells. Figure 1. Western blot analysis showed higher level of expression of Na/H exchanger I in AR-AML-OCI2 cells than AS-AML-OCI2 cells. Figure 2. Percentage of apoptotic cells after treatment with 20 µM HMA and/or 10 µM AraC. Figure 2. Percentage of apoptotic cells after treatment with 20 µM HMA and/or 10 µM AraC. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document