scholarly journals Carbon Reservoirs in Temperate South American Nothofagus Forests

2002 ◽  
Vol 2 ◽  
pp. 53-75 ◽  
Author(s):  
Klaus Baswald ◽  
Jose D. Lencinas ◽  
Gabriel Loguercio

Humans are influencing the global carbon (C) cycle due to the combustion of fossil fuels and due to changes in land use management. These activities are fostering the manmade greenhouse effect and thus global climate change. Negative effects for life on earth are accounted for.Among others the international climate debate focused attention on forests and forestry, knowing about their considerable influence on global climate change. Whilst the global C budget is described fairly well, there is a lack of regional data describing the C reservoirs and flows in detail. This has to be constituted especially for forests in developing countries.This paper presents an investigation at regional scale of the C reservoirs in a South American forest ecosystem. The investigation puts emphasis on the area and stand volume estimation and the development of expansion and reduction factors. Vegetation types are classified and stratified, determining the corresponding areas and estimating the stand volume. Converting factors are developed to calculate C in branches and roots as a percentage of standing wood measured by inventories.

Stanovnistvo ◽  
2017 ◽  
Vol 55 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Predrag Petrovic ◽  
Goran Nikolic ◽  
Ivana Ostojic

Over the past several decades there has been a strong intensifying trend of human society impact on ecosystems, consumption of natural resources and global change. The environmental impact of the society is fully apparent and dominantly implemented through various greenhouse gases emissions (GHG), leading towards global climate change with considerably spread harmful effects. Global climate change includes the earth and ocean surface and atmospheric warming, but also melting of snow and ice, increase of sea levels and ocean acidity, as well as ever more common natural phenomena extremes (winds, various forms of rainfall/precipitation, extremely low or high temperatures, etc.). Scientists are well-familiarized with the fact that use of fossil fuels, such as oil derivatives and coal, is the main generator of harmful gases. In addition, possible substitutions for fossil fuels in the form of other energy sources are very limited, and it should be remembered that other energy sources also have certain adverse environmental effects. Bearing in mind climate change caused by products of fossil fuels combustion, as well as inevitable depletion of natural crude oil resources, management of growing global energy demand becomes one of the key goals and challenges of 21st century. If these reasons are coupled with obligations emanating from Kyoto Protocol, it is clear that attention of researches should be more than reasonably focused on the main determinants of energy consumption. This study is focused on illumination of key demographic and economic determinants of energy consumption in 28 EU member states in the period 1960- 2014. The results obtained demonstrate that population positively and quite strongly influence total energy consumption. An increase of population of 1% will result in an increase of energy consumption of 1.59% to 1.76%. Such relation most probably can be explained by the fact that demographic growth of the society aggravates and complicates planning processes of efficient energy consumption, diminishing the ability of society to be energy efficient. The population effect of persons aged 65 and above to energy consumption is also positive. An increase in share of this age group of 1% will result in an increase in energy consumption of approximately 0.43%. Positive elasticity coefficient should be understood as a proof that European societies with higher share of senior citizens consume more energy that societies with higher share of younger population, not necessarily as an argument that senior citizens use more energy than younger population. The explanation for such nature of a cause-andeffect relation could be that high share of senior citizens influences the structure of production and consumption, spatial distribution of population, transport infrastructure and social services provided. A significant influence on energy consumption in the EU is made by the level of economic development of countries, which is in accordance with the Environmental Kuznets Curve (EKC), suggesting a relation of inverted letter ?U?. The amount of income per capita needed to have the EKC expressed ranges between 54,183 and 81,552 dollars.


Glaciers ◽  
2015 ◽  
Author(s):  
Jorge Daniel Taillant

In the preceding chapters of this book, we’ve traveled through a world of ice that was probably largely uncharted for most of us. Hopefully, we’ve learned a little bit about these fantastic frozen natural resources that play such a fundamental role in the sustainability and balance of our global ecosystem. Glaciers are melting. They are in danger because we have placed them in danger and, as such, we need to take note of and responsibility for this vulnerability, not only to protect glaciers but also to protect the very essence of our global habitat. Glaciers have been unprotected because they are obscure, removed, alien to our daily lives, located in far away places that are for the most part inhospitable to our way of life. And yet, they are a fundamental and integral part of our way of life. With modern tools like the Internet and programs like Google Earth, we can get closer to these fabulous vulnerable resources, to learn about them and work to protect them. The world is challenged today to address global climate change. If we envision a sustainable and harmonious environment in our future, we must progressively move away from fossil fuels and introduce a more balanced and sustainable mix of energy sources grounded on renewable energy. We must find solutions to generating, harnessing, transporting, and managing renewable energies, and we must progressively phase out oil and gas from our daily lives. It is possible; it just takes personal and collective conviction to set ourselves in motion to achieve this goal. Glaciers are a majestic resource, inspiring awe and wonder in a world of frozen beauty that awaits our discovery but that also alerts us to our excesses and indifference. We are losing our glaciers because we have ignored the extreme vulnerability of our planetary ecosystem, and we now must face difficult decisions about policy, consumption, and lifestyle changes that shake the foundations of our society. Global climate change for many seems intangible.


2017 ◽  
Author(s):  
Pei Hou ◽  
Shiliang Wu ◽  
Jessica L. McCarty

Abstract. Wet deposition driven by precipitation is an important sink for atmospheric aerosols and soluble gases. We investigate the sensitivity of atmospheric aerosol lifetimes to precipitation intensity and frequency in the context of global climate change. Our study, based on the GEOS-Chem model simulation, shows that the removal efficiency and hence the atmospheric lifetime of aerosols have significantly higher sensitivities to precipitation frequencies than to precipitation intensities, indicating that the same amount of precipitation may lead to different removal efficiencies of atmospheric aerosols. Combining the long-term trends of precipitation patterns for various regions with the sensitivities of atmospheric aerosols lifetimes to various precipitation characteristics allows us to examine the potential impacts of precipitation changes on atmospheric aerosols. Analyses based on an observational dataset show that precipitation frequency in some regions have decreased in the past 14 years, which might increase the atmospheric aerosol lifetimes in those regions. Similar analyses based on multiple reanalysis meteorological datasets indicate that the precipitation changes over the past 30 years can lead to perturbations in the atmospheric aerosol lifetimes by 10 % or higher at the regional scale.


2021 ◽  
Vol 20 (2) ◽  
pp. 138-155 ◽  
Author(s):  
Rachel Hartnett

Global climate change threatens to kill or displace hundreds of thousands of people and will irrevocably change the lifestyles of practically everyone on the planet. However, the effect of imperialism and colonialism on climate change is a topic that has not received adequate scrutiny. Empire has been a significant factor in the rise of fossil fuels. The complicated connections between conservation and empire often make it difficult to reconcile the two disparate fields of ecocriticism and postcolonial studies. This paper will discuss how empire and imperialism have contributed to, and continue to shape, the ever-looming threat of global climate crisis, especially as it manifests in the tropics. Global climate change reinforces disparate economic, social, and racial conditions that were started, fostered, and thrived throughout the long history of colonization, inscribing climate change as a new, slow form of imperialism that is retracing the pathways that colonialism and globalism have already formed. Ultimately, it may only be by considering climate change through a postcolonial lens and utilizing indigenous resistance that the damage of this new form of climate imperialism can be undone.


2018 ◽  
Vol 18 (11) ◽  
pp. 8173-8182 ◽  
Author(s):  
Pei Hou ◽  
Shiliang Wu ◽  
Jessica L. McCarty ◽  
Yang Gao

Abstract. Wet deposition driven by precipitation is an important sink for atmospheric aerosols and soluble gases. We investigate the sensitivity of atmospheric aerosol lifetimes to precipitation intensity and frequency in the context of global climate change. Our sensitivity model simulations, through some simplified perturbations to precipitation in the GEOS-Chem model, show that the removal efficiency and hence the atmospheric lifetime of aerosols have significantly higher sensitivities to precipitation frequencies than to precipitation intensities, indicating that the same amount of precipitation may lead to different removal efficiencies of atmospheric aerosols. Combining the long-term trends of precipitation patterns for various regions with the sensitivities of atmospheric aerosol lifetimes to various precipitation characteristics allows us to examine the potential impacts of precipitation changes on atmospheric aerosols. Analyses based on an observational dataset show that precipitation frequencies in some regions have decreased in the past 14 years, which might increase the atmospheric aerosol lifetimes in those regions. Similar analyses based on multiple reanalysis meteorological datasets indicate that the changes of precipitation intensity and frequency over the past 30 years can lead to perturbations in the atmospheric aerosol lifetimes by 10 % or higher at the regional scale.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1263
Author(s):  
Martin Beer ◽  
Radim Rybár

Global climate change is putting humanity under pressure, which in many areas poses an unprecedented threat to society as we know it. In an effort to mitigate its effects, it is necessary to reduce the overall production of greenhouse gases and thus, dependence on fossil fuels in all areas of human activities. The presented paper deals with an evaluation of energy mix of the Slovak Republic and four selected neighboring countries in the context of achieving their carbon neutral or carbon negative future. The development of the evaluated energy mixes as well as greenhouse gas emissions is presented from a long-term perspective, which makes it possible to evaluate and compare mutual trends and approaches to emission-free energy sectors.


The Paris Agreement on combating global climate change expresses the consensus of almost all countries in the world on the awareness of the unpredictable dangers of global climate change. We all have to work together to execute the necessary solutions to fight global climate change. Human-induced CO2 is a fundamental part of the global greenhouse effect, so must be handling sources of CO2 emissions into the earth’s atmosphere. From electricity production processes using fossil fuels releases huge amounts of carbon dioxide into the environment, which is the main reason for global climate change. In the meantime, until now, people have not had effective solutions to thoroughly treat industrial emissions. Therefore, we must quickly eliminate all thermal power plants with fossil fuels, and must quickly deploy renewable energy production processes.


Zoo Biology ◽  
2015 ◽  
Vol 34 (4) ◽  
pp. 393-393 ◽  
Author(s):  
Jerry F. Luebke ◽  
Susan Clayton ◽  
Lisa-Anne DeGregoria Kelly ◽  
Alejandro Grajal

2016 ◽  
Vol 1 (1) ◽  
pp. 37 ◽  
Author(s):  
Ali Rahmat ◽  
Abdul Mutolib

Increases in air temperature indicate a global climate change. Thus, information in the change of temperature regional scale is important to support global data. The present research was conducted in Gifu city and Ogaki city located in Gifu prefecture, Japan. The results showed that, average air temperatures in both cities are quite similar with a difference value of under 1<sup>o</sup>C. Maximum air temperature in Gifu city is significantly higher than Ogaki city, whereas minimum air temperature in Gifu city is significantly lower than in Ogaki city. Daily range of air temperature in Gifu city significantly higher than in Ogaki city. In both cities, air temperature relatively increased in three decades. This is because of different in land characteristics in both cities.


Sign in / Sign up

Export Citation Format

Share Document